

Capturing Chemistry

"What you see is what you get" In the world of mechanism and chemical transformations

> Dr. Stephan Schürer Head of Intl. Sci. Content Libraria, Inc.

> > sschurer@libraria.com

Distribution of Knowledge

in many companies only 20 to 40 % of existing knowledge is utilized

Pharmaceutical Industry

Challenges :

- Patent expiration of many drugs
- Increased R&D costs, but fewer drugs in pipeline
- Uncertainty of success high attrition rate
- Retirement of researchers and job fluctuation

How to activate and utilize (and preserve) knowledge as a resource

Knowledge-Based Drug Discovery

"I think having breadth in chemistry is the way to go" (with respect to identifying multiple lead series)

Enumeration Engine

Chris Lipinski, DDT Jan 2003 interview

- Interprets reaction mechanisms
 - Multi-component reactions
 - Rearrangement reactions
 - Intramolecular reactions cyclizations
- Complex multi-step transformations
- Reaction step subsequences
- Generic stereochemistry
- Multiple reaction sites
- Multiple matches in building blocks
- Product mixtures
- Formation of stereoisomers
- Salt forms of reactants / products

"I think having breadth in chemistry is the way to go" (with respect to identifying multiple lead series)

Enumeration Engine

Chris Lipinski, DDT Jan 2003 interview

- All interactions via intuitive GUI
- Web-browser and drawing tool
- Interactive graphical debugging functionality
- Failed BB analysis
- Synthetic sequences of individual compounds

Fast

- 10K library 2 minutes
- 100K library 7 minutes

"Where computational chemistry tools really shine is capturing the types of functionality you want to avoid and they are pretty good at filtering by property, but they do a poor job of taking into account, chemical feasibility."

Chemistry Archive

Chris Lipinski, DDT Jan 2003 interview

- 14.600 Reaction transforms with detailed experimental procedures
- Reactions are categorized by mechanism and product type
 - High throughput chemistry
 - Kinase-related heterocyclic chemistry

2.3 Million Compounds

Demo Enumeration Sequence

- Stereoselective multi-component coupling (stereochemical induction)
- Generic stereochemistry (chiral centers do not influence the reaction)

Demo Enumeration Sequence

- Yne-ene cross metathesis
- Diels-Alder and double elimination
- Formation of isomeric product mixtures

Demo Enumeration Sequence

 Rearrangement via nitrene (Stereochemical configuration is preserved)

Another Enumeration Sequence

- Generic stereochemistry in reactions
- Side chain modifications in synthetic steps

Houghten et al J. Comb. Chem. 1999, 1, 195

Side-Chain Modifications

Knowledge-Based Drug Discovery

"Another recent theme is how to efficiently capture chemical data from the literature, especially in terms of constructing quantative structure-activity relationship datasets."

SAR Archive

Chris Lipinski, DDT Jan 2003 interview

- ~6K assay protocols with detailed experimental assay procedures
- ~300 kinase-related targets, categorized by mechanism
 - SAR organized by assay type, target, etc.
 - SAR grouped by binding-mode assay conditions
- Technology can capture SAR on any target / gene family

Kinase Gene Family

~16K unique compounds

Integrated Computational Models

- E-screen / QSAR models
 - 12 quantitative e-screen models developed
 - 2 binary models
 - Data for 20 more models of kinase gene family targets

1	Target	Value
1 1	0K2April	(4.606818)
2		10.0000000
3		· · · · · · · · · · · · · · · · · · ·
4 1	TEH-binary	(n.827754)
E	Chi-terrety	(-q darrate p-)
6		10.00100
7		CE ALLERS
8		(CARTE)
9		(1 HARD)
t0 =	Site and the proof	(1254620)
11 1	RC-per	(4.120200)
12 1	01/5-(set)	(# 586814)
12 -	OFB-seat	(4.384544)
14 14	dist-branky	(-0.301006)

- Other calculated descriptors
 - Molecular properties
 - Lipinsky properties
 - ADME models
- Tox

MR_ROTORS	0	
MR_DONORHB	2	
MR_ACCEPTHB	6.20	
MR_CLOOP	5.3680	
QPLOGPC16	15.4460	
QFLOGPOCT	25.8730	
QPLOGPW	22.24	
QPLOGP0	5.5860	
QPL0G5	-6.4270	
STARS	3	
Absorption		
BIPCACO	65.9490	
AFF1PG400	270.2650	
AFFITMOCK	215.4010	
QPLOGRP	-3.2260	
Distribution		
QPLOGRHSA.	1.4580	
Metabolism		
METABOLS	2	
Blood-Brain-Barrier/CNS		
QPLOG88	-0.2030	
CNS	0	
Functional groups		

Demo Enumeration Results and Analysis

ి సి. చింది. ల	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	otra Jaco	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MoleculeId:1775742	MoleculeId:1775745	MoleculeId:1775747	MoleculeId:1775753
MWT: 539.03	MWT: 528.62	MWT: 539.69	MWT: 483.62
NAME:	NAME:	NAME:	NAME:
CLOGP: 4.851	CLOGP: 4.439	CLOGP: 5.059	CLOGP: 4.696
TPSA: 122.04	TPSA: 152.29	TPSA: 118.38	TPSA: 109.15
RotBonds: 3	RotBonds: 3	RotBonds: 3	RotBonds: 3
HBA: 5	HBA: 5	HBA: 4	HBA: 4
HBD: 3	HBD: 3	HBD: 3	HBD: 3
Charge: 0	Charge: 0	Charge: 0	Charge: 0
eScreen eABL_11_7_02-pval	eScreen eABL_11_7_02-pval	escreen eABL_11_7_02-pval	eBereen eABL_11_7_02-pval
(5,989581)	(5,125718)	(5,500013)	(5,556639)
eScreen: eADK-binary (091224)	eScreen: eADK-binary (.030222)	eScreen: eADK-binary (.015944)	eScreen: eADK-binary (.008814)
eScreen eCDK1-B-pval (6.498156)	eScreen eCDK1-B-pval (6 252302)	eScreen eCDK1-B-pval (6 246843)	eScreen eCDK1-B-pval (5.921327)
eScreen: eCDK2-A-pval (5.547401)	eScreen: eCDK2-A-pval (5.592853)	eScreen: eCDK2-A-pval (5/257623)	eScreen: eCDK2-A-pval (5.268445)
eScreett eCDK2-E-pval (6.097973)	eScreen: eCDK2-E-pval (5.700506)	eScreen: eCDK2-E-pval (5.792066)	eScreen: eCDK2-E-pval (5.642983)
eScreen: eCDK4-D1-pval (5.241059)	eScreen: eCDK4-D1-pval (4.945835)	eScreen: eCDK4-D1-pval (4.786525)	eScreen: eCDK4-D1-pval (4.634898)
eScreen: eCDK5-pval (4.322529)	eScreen: eCDK5-pval (4.38652)	eScreen: eCDK5-pval (4.502575)	eScreen: eCDK5-pval (4.702122)
eScreen: eEGFR-pval (3.990131)	eScreen: eEGFR-pval (4.76778)	eScreen: eEGFR-pval (4.190692)	eScreen: eEGFR-pval (4.379848)
escreen: eLCK-pval (5.033617)	eScreen: eLCK-pval (4.663908)	eScreen: eLCK-pval (4.742709)	eScreen: eLCK-pval (4.687625)
eScreen: eP38_alpha-pval (7.07538)	eScreen: eP38 alpha-pval (7.090918)	eScreett: eP38_alpha-pval (7.10395)	eScreen: eP38_alpha-pval (7.100818)
eScreen: ePKC-pval (4.742338)	escreen: ePKC-pval (4.554293)	eScreen: ePKC-pval (4.552693)	eScreen: ePKC-pval (4.512421)
escreen: esc-pval (3.974903)	escreen: eSRC-pval (4.368784)	escreen: escc-pval (4.417108)	escreen: estC-pval (4.088138)
escreen: eTYRK-binary (1.016216)	escreen: eTYRK-binary (.990398)	escreen: eTYRK-binary (.9665)	escreen: eTYRK-binary (1.020369)

- Enumerated products can be committed to the data base or exported
- Compounds are analyzed by variety of integrated models
- Results are automatically sent to the user by email with a life link to the server

Enabling Technologies

- DayCart 4.81 w/ program objects
- SMILES, SMARTS, SMIRKS
- Reaction toolkit 4.81
- Oracle 9i
- Weblogic 6.0
- Misc. tools and utilities
 - QuickProp fromSchrödinger
 - Linux RDF automapper (Infochem)
 - CSFC (SMILES depiction)
 - MDL Chime Pro plugin

Libraria's Discovery Platform

- Based upon accepted industry-standard database platform and software (Oracle/Daylight)
- Fully web-based to make technology available to bench chemists
- Scalable, open and enterprise-wide architecture
- Integrated, searchable archive of chemistry and SAR data with increasingly valuable knowledge content
- Intuitive technology for leveraging the medicinal chemist's conceptual capabilities in drug discovery

The knowledgebase-architecture is a growing repository of chemistry, biology, and derived computational models – a learning machine – that automatically develops and utilizes its predictive capability.

Acknowledgements

Thank you for listening! Daylight Chemical Information Systems Infochem GmbH Wolf-Dietrich Ihlenfeldt Peter Ertl

