
Cabinet and Card
Federated Access to Chemical and Biological Data

Web Based Clients for
DayCart

What is Cabinet

Chemical And Biological Informatics
NETwork (aka Fedora).

A federation of servers which each serve
a particular data set.

No unified data model - each server uses
the best model for the particular
information.

The servers are useful in isolation or in
any combination.

Data Models and
Languages

Cabinet servers can provide different types
of searches depending on their particular
data model (small molecule similarity,
protein sequences similarity, etc).

Servers speak HTTP to clients (browsers and
other Cabinet servers).

Each Cabinet servers can send queries to
other Cabinet servers via languages (e.g.
what do you know about molecules like this
SMILES?).

Why Not Unification?

An alternative approach would be to use
a unified data model.

This potentially suffers from the least
common denominator problem.

Creating a unified model of diverse subject
matter is hard and difficult to expand.

Why Not Unification?

Imposing elaborate structure on data can
limit the types of questions that can be
asked.

However, attempts to unify knowledge
are certainly worthwhile and unified
approaches to integration are
complementary to federated approaches.

Federation Advantages

No need for a global data model.

Addition of new subject areas is thus
easier since there are fewer global
dependencies.

Each subject is represented in the most
appropriate data model.

Federation Disadvantages

Loose coupling and anarchy.

Results are sometimes unexpected (just
like searching the WWW).

If a query can be posed to a more highly
structured informatics system, the
results are likely to be more precise.

Demo

A web accessible demo version of Cabinet
is available by signing up at http://
cabinet.metaphorics.com.

CARD
Cabinet Access to Relational Data

Motivations

Primary motivation:
provide users with a means to
incorporate their own data within
servers in the Cabinet federation.

Data probably already stored in
RDBMS or other structured format

Motivations

Provide Metaphorics with a tool set to
generate Cabinet servers for data which
require an RDBMS environment.

Rapidly changing/updated

Large datasets

Motivations

Provide a tool for generating DayCart
based interfaces and applications,
perhaps outside of the Cabinet
federation.

Incorporating User Data

1. User control of look and feel. This is accomplished
by providing a template system in CARD.

2. User control of data access. Provided via a small
amount of scripting plus SQL access to the back
end RDBMS. An embedded SQL engine is also
available (based on SQLite).

3. Access to Cabinet functionality. Provided by the
underlying CARD application.

To incorporate user data from an RDBMS in
Cabinet servers, we need to provide three
things:

Demos

CARD server in Cabinet Federation.

CARD based front end to DayCart
Database (VCS).

Example Cabinet/CARD
Server

Serves the Morphochem dataset.

15840 compounds from combinatorial
synthesis

5 measured enzyme activities

Example typical of project dataset.

Server participates in Cabinet
federation.

Select prototype

CARD based front end to VCS database.

Virtual Chemical Stores (VCS):

Compound normalization via DayCart
transform capabilities

Provides compound loading scripts

No Daylight provided interface to VCS
data.

Cabinet

Cabinet provides an easy to use method
for exploring chemical and biological
relationships.

CARD
a database driven, scriptable, template
based web content generation system.

provides chemical and biological
information processing facilities via:

internal facilities

DayCart and RDBMS backends

generates servers which are full
members of a Cabinet federation.

Select

Prototype DayCart based web application.

Feedback? Interest in evaluation?

Customizable.

Acknowledgments
Metaphorics

Dave Weininger

Vera Povolna

Daylight

Jack Delany

Mick Kappler

Select: Daylight krewe

Additional Details

Look and Feel

Web content generation is widely done via
template systems. The CARD template
system, ANTES (ANother TEmplate
System) is based on the StringTemplate
language which enforces a strict
separation of presentational and
procedural components. The author of
StringTemplate (Terence Parr) has written
an excellent paper on the benefits of such a
design.

ANTES
is a Metaphorics implementation of the
StringTemplate language based on the
language grammar from the
StringTemplate public documentation.

is written in C and uses the Daylight
toolkit object system.

provides API binding for C and the Lua
scripting language. Other bindings are
possible.

ANTES
ANTES templates are simply text (HTML) with
embedded named slots (called attributes)
where values can be substituted.

Simplest example:

<h1>Hello, $planet$</h1>
evaluates to (when the value of attribute
planet is "World"):
<h1>Hello, World</h1>

There are more advanced features in ANTES,
including multi-valued attributes and
templates called from other templates.

Scripting
Small scripts are used to generate SQL
queries and map returned data to
template attributes.

The scripts are written in the Lua
language:

Small, elegant language

Written in portable, standard C

Easy to embed in applications

Easy to call C routines

CARD Application

Generic application which is specialized
to a particular database and application
via a configuration file:

templates

scripts

help

preferences

CARD Application
Application provides:

HTTP server (HTTP toolkit)

RDBMS backend access

internal RDBMS access

Daylight and Metaphorics tools

page header and footer, navigation menu,
preferences and help

Cabinet services: server to server queries

Functional Overview
Receive HTTP request.

Pass arguments from URL and/or POST to
appropriate page script.

Select template.

Generate SQL and submit to database.

Assign returned data to template attributes.

Evaluate template and return generated HTML
string.

Status Example

Status Example

<h3>card server
status summary:</h3>
<blockquote>
This card service is hosted by
obelisk :26599 at 10.44.1.94.

This server has been up for 15:31:59
and has serviced 91 HTTP requests.
<p>239492 data objects are current.</p>
</blockquote>

Status Example

<h3>card server
status summary:</h3>
<blockquote>
This card service is hosted by
$card_host$:$card_port$ at $card_lips$.

This server has been up for $card_uptime$
and has serviced $card_nreqs$ HTTP requests.
$if (ndata)$<p>$ndata$ data objects are current.</p>$endif$
</blockquote>

Status Example

path="/card/status",
type = ".html",
script = [[
local g = antes.createGroup(”status”)
g:setSuperGroup(card.master)
local t = g:getInstanceOf(”card/status”)
local db=oracle.connect(card.db)
card.set_title("status")
...

Status Example

...
local e,s = db:SQL("select count(*) from acd_main”, 1,0,function
(ncols,cols,names) t:setAttribute(”ndata”,cols[1]) end)
t:setAttribute(”card_uptime”,card.card_uptime)
t:setAttribute(”card_host”, card.get_prop(card.htob, “_host”))
t:setAttribute(”card_port”, card.get_prop(card.htob, “_port”))
t:setAttribute(”card_lips”, card.get_prop(card.htob, “_lips”))
t:setAttribute(”card_nreqs”, card.get_prop(card.htob, “_nreqs”))
return t:toString()
]]

