
Daylight Toolkit Programmers' Guide

Table of Contents
 Daylight Toolkit Programmers' Guide..1

1. Introduction..1
1.1 Daylight Toolkit Modules...1
1.2 Audience and Background..2
1.3 Other References...2
1.4 Conventions...3
1.5 Compiling and Linking...3

1.5.1 Compiling..3
1.5.2 Linking...4
1.5.3 Toolkit Libraries..5
1.5.4 Advanced Programming..5

2. Basics: Daylight Toolkit Objects...6
2.1 Introduction to Objects..6
2.2 Handles..7
2.3 Object Types..8
2.4 The NULL_OB Handle...9
2.5 Daylight Version Handling...9

3. Basics: Polymorphic Functions...10
3.1 Polymorphism...10
3.2 Generic Functions..11
3.3 Semi-Generic Functions..12

4. Error handling..13
4.1 Introduction...13
4.2 General approach...14
4.3 Function types...14

4.3.1 Functions which create objects..14
4.3.2 Functions which get the properties of objects...15
4.3.3 Functions which modify the properties of objects...15
4.3.4. Exceptions...15

4.4 Function return types...16
4.4.1 Functions which return dt_Boolean...16
4.4.2 Functions which return dt_Integer...16
4.4.3 Functions which return dt_Real...17
4.4.4 Functions which return dt_String..17
4.4.5 Functions which return dt_Handle...17

4.5 Error message facilities...17
5. Basics: String and Number Objects...18

5.1 String Objects..18
5.2 Integer and Real Number Objects...19
5.3 Binary-Data Functions..19

6. Basics: Streams and Sequences...20
6.1 Properties...20

6.1.1 Stream Properties...20
6.1.2Sequence Properties..21
6.1.3 Example...21

6.2 Functions on Streams and Sequences..21
6.3 Functions on Sequences Only...22

7. SMILES Toolkit: Molecules..23

Daylight Toolkit Programmers' Guide

i

Table of Contents
 Daylight Toolkit Programmers' Guide

7.1 Creating Molecules..23
7.2 Constituents of a Molecule..23
7.3 Modifying Molecules..24

7.3.1 Derived Properties...24
7.3.2 The Modify-on and Modify-off States...24
7.3.3 Functions Applicable Only During Modify-On...25
7.3.4 Functions Applicable Only During Modify-Off..25
7.3.5 Functions Applicable At All Times...25

7.4 Structural-Modification Functions..26
7.5 Properties of Atoms...26
7.6 Properties of Bonds...27
7.7 Properties of Cycles...28
7.8 Generating SMILES..28
7.9 Aromaticity..28
7.10 Symmetry..28
7.11 Chirality...29

8. SMILES Toolkits: Substructures and Paths...30
8.1 Introduction...30
8.2 Functions on Substructures and Paths...31

9. SMARTS Toolkit: Structural Searching..32
9.1 Introduction...32
9.2 Optimizing SMARTS..32
9.3 Allocating Patterns and Pathsets...33
9.4 Vector Bindings and Vbind Functions..33

9.4.1 Pattern Bindings...33
9.4.2 Pathset Bindings..33
9.4.3 Functions..34

9.5 Pattern Matching...34
10. Fingerprint Toolkit...35

10.1 Introduction...35
10.2 Fingerprint Functions..36

10.2.1 Global Settings...36
10.2.2 Creating Fingerprints...36
10.2.3 Properties...37
10.2.4 Fingerprint Bit Operations...37
10.2.5 Comparisons..38

11. Depict Toolkit..38
11.1 Introduction...38
11.2 Depictions..39
11.3 Conformations...41
11.4 Modifying Depictions and Conformations..41
11.5 The Drawing Library...42

12. Reaction Toolkit..42
12.1 Introduction:..43
12.2 Polymorphism and the Reaction Toolkit:..43
12.3 Processing reactions:...45
12.4 Reaction Molecules:..48

Daylight Toolkit Programmers' Guide

ii

Table of Contents
 Daylight Toolkit Programmers' Guide

12.5 Atom Maps:...48
12.6 Hydrogens in Reactions:...49
12.7 Reaction Queries:..49
12.8 Reactions and other objects:..50

12.8.1 Paths and Substructs:...50
12.8.2 Pathsets:...51
12.8.3 Depictions:...52
12.8.4 Conformations:..52
12.8.5 Fingerprints:...53

12.9 Transforms...53
13. Program Object Toolkit...56

13.1 Introduction...56
13.2 Using Program Objects...56

13.2.1 Welcome and Farewell Messages..57
13.2.2 Other Special Messages...57
13.2.3 Program Object Toolkit Functions..57

13.3 PIPETALK Protocol..58
13.3.1 Definitions...58
13.3.2 Receiving Messages...58
13.3.3 Sending Messages..59
13.3.4 Initial Response to Execution..59
13.3.5 Program Operation...59
13.3.6 Response to Special Messages...59
13.3.7 Program Termination...59
13.3.8 Naming Convention...60

14. THOR and Merline Toolkit: Servers...60
14.1 Introduction: THOR and Merlin Objects..60
14.2 Connecting to a Server..61
14.3 Security..63

14.3.1 Restricted user DX_INFO_USER...63
14.3.2 Adding and Changing Users and Passwords...64

15. THOR and Merlin Toolkits: Databases...64
15.1 Introduction...64
15.2 Search Path..64
15.3 Creating and Configuring Databases...65

15.3.1 Database Creation..65
15.3.2 Database Configuration...65
15.3.3 Database Crunching...66

15.4 Opening and Closing Databases..67
15.5 Memory Usage: Cache and Hold..67

15.5.1 Merlin HOLD..67
15.5.2 THOR Caching..68

15.6 Database Security..69
15.7 Record Locking...69

16. THOR and MERLIN Toolkits: Datatypes...71
16.1 Datatype and Fieldtype Objects..71
16.2 Getting Datatype and Fieldtype Objects...71

Daylight Toolkit Programmers' Guide

iii

Table of Contents
 Daylight Toolkit Programmers' Guide

17. THOR Toolkit: THOR Datatrees...73
17.1 THOR Streams..73
17.2 Datatree Objects..75

17.2.1 Creating Datatree Objects..75
17.2.2 Destroying Datatrees and Datatree Objects...76
17.2.3 The Datatree Memory..76
17.2.4 Writing TDTs to a Database..77
17.2.5 Timestamps..77
17.2.6 Merging Datatrees..77
17.2.7 Cross-Referencing...78
17.2.8 Functions on TDT Objects...79

17.3 Dataitem and Datafield Objects..81
17.3.1 Functions on Dataitems and Datafields...81

18. Merlin Toolkit..82
18.1 Introduction...82
18.2 Tasks -- "Time Slicing"...83
18.3 Querying for Capabilities..84
18.4 Column Objects...85

18.4.1 Column "Functions"..85
18.4.2 Creating Columns..86
18.4.3 Information about Columns...87
18.4.4 Polymorphic Functions on Columns..87

18.5 Hitlist Objects..88
18.5.1 Creating Hitlists...88
18.5.2 Retrieving Data: Cells..88

18.6 Sorting...88
18.7 Searching...90

18.7.1 Actions...91
18.7.2 Parametric Searches...91
18.7.3 Structural Searches..92
18.7.4 Program-Object searches The Merlin server's searching capabilities can be

 extended via the use of user-written program objects..93
18.8 Other Hitlist Operations..95
18.9 Saving and Restoring Hitlists..96

19. Widgets..97
19.1 Introduction...97
19.2 Widget Functional Interface..98
19.3 Widget Callback Functions...98
19.4 Options..99
19.5 The Widgets..99

19.5.1 3D or "Trackball" Widget..100
19.5.2 Depict Widget..100
19.5.3 Edgar Widget...100
19.5.4 File Widget..100
19.5.5 Font Utility...101
19.5.6 GRINS Widget...101
19.5.7 Help Widget...101

Daylight Toolkit Programmers' Guide

iv

Table of Contents
 Daylight Toolkit Programmers' Guide

19.5.8 Message Widget...101
19.5.9 Status Widget...101
19.5.10 TDT Widget...101

19.6 Widget Programmer's Reference...102
20. HTTP Toolkit...102

20.1 The Application Programmer Interface...103
20.1.1 Create a Service (dt_alloc_http_server)...103
20.1.2. Receive a Request (dt_http_get)...104
20.1.3 Send a Response (dt_http_put)..104

20.2 The Structure of Programs..104
20.2.1 Build a CGI..104
20.2.2. Build a Server...106
20.2.3. Build a Dual-Purpose Server & CGI..108

20.3 The Essential Properties..110
20.3.1 Get a Request...110
20.3.2 Set a Response...110
20.3.3 Processing the GET Method: Hello World!..111

20.4. The Entire Set of Properties...114
20.4.1. Read-Only Properties of a CGI/Server...114
20.4.2 Read-Write Properties of a CGI/Server...115
20.4.3 Read-Only Properties of a Request..116
20.4.4 Read-Write Properties of a Response..118

20.5 Working With the Toolkit...121
20.5.1 Processing the POST Method..122

20.5.1.1 URL-Encoding (application/x-www-form-urlencoded)....................................123
20.5.1.2 Multipart Data (multipart/form-data)...125

20.5.2. Authenticating Access..127
20.5.3 Serving Files from Disk...131
20.5.4. Scripting with Java..136
20.5.5 Formatting With Automatic HTML..138
20.5.6 Adding Color to GIF Images...140
20.5.7 Avoiding Run-Time Problems With Compiler Definitions...142
20.5.8 Technical Specifications, Methods, Headers, and Status Codes.................................143

21. Reentrant Toolkit Interface..144
21.1 Introduction...144
21.2 Data Issues...144
21.3 Per-Thread Object Model..145
21.4 Global Object Model...147
21.5 Object Granularity...149
21.6 Thread Safety versus Reentrancy..149
21.7 Limitations...150

Daylight Toolkit Programmers' Guide

v

Daylight Toolkit Programmers' Guide
Daylight Version 4.9

Release Date 08/01/11

DAYLIGHT Chemical Information Systems, Inc. Aliso Viejo, CA USA

Copyright Notice

This document and the programs described herein are Copyright © 1992-2011, Daylight Chemical
Information Systems, Inc., Aliso Viejo, CA. Daylight explicitly grants permission to reproduce this document
under the condition that it is reproduced in its entirety including this notice, and without alteration. All other

rights are reserved.

1. Introduction

Daylight's Goal
To provide the best known computer algorithms for chemical information processing to those
who need them; to provide chemical information systems capable of handling all of the
chemical information in the world.

Computers are used to solve many problems in chemistry, including predicting the properties of a molecule,
maintaining and searching databases of chemical properties, and deducing structure from chemical properties.
These tasks are challenging to the computer scientist and to the chemist.

Unfortunately, many workers in this field waste a great deal of their time creating and recreating what might
be termed the chemical information infrastructure -- programs to read connection tables, maintain databases,
depict molecules, perform sub- and superstructure searches, similarity searches, and so forth. Although all of
this infrastructure is well understood and widely duplicated, it has never been made available in any reusable
form. The result is that on any particular chemistry project that uses computers, the majority of time is spent
recreating the infrastructure.

The Daylight Toolkit provides this chemical-information infrastructure. Using a simple set of functions based
loosely on an "Object Oriented Programming" model, the Daylight Toolkit allows programmers to get directly
to their unique chemical problems; they needn't be bothered with reinventing the infrastructure. With the
Daylight Toolkit, programmers can get directly to the problem at hand, often saving so much time that
projects can be finished in a fraction of the time that a reinvent-the-wheel approach would have required.

The Daylight Toolkit supports several popular languages, including C and FORTRAN, and is available on a
variety of platforms, including several UNIX machines, PCs and Macintoshes.

1.1 Daylight Toolkit Modules

The Toolkit is divided into several modules, available separately or as packages (some require other modules
to be present; for example the Toolbase and SMILES modules are required by all other modules). Below is a
brief outline of each Toolkit module's features:

ToolBase This module is the foundation for all Daylight Toolkit modules. Includes Handles, streams and
sequences, error functions, polymorphism, string objects, and other basic functionality.

 Daylight Toolkit Programmers' Guide 1

SMILES (Simplified Molecule Input Line Entry System) SMILES input and output; unique-SMILES
generation; molecular connection tables; isomerism; chirality; addition, deletion, and modification of atoms
and bonds; substructure objects (but not substructure searching -- see SMARTS). (See Chapter 2 for a
complete description of SMILES).

SMARTS (SMILES Arbitrary Target Specification) A substructure search system utilizing SMARTS, an
extension of SMILES which allows chemically meaningful expressions to be constructed.

Fingerprints Generating molecular "fingerprints", characteristic arrays of bits that allow high-speed screening
for substructure- search systems, and similarity metrics for molecules.

Depict 2-D schematic representations (depictions) of molecules; 3- D conformations; depiction modification;
atom, bond, and whole- depiction labels; rotations.

Thor (THesaurus Oriented Retrieval) Chemical Databases using a thesaurus-like approach; allows high-speed
storage and retrieval of chemical information using ambiguous or inexact identifiers, synonyms, trade names,
and so forth.

Merlin High-speed in-memory searching of chemical structure and chemical information.

1.2 Audience and Background

This document is intended for programmers who will be incorporating the Daylight Toolkit into their own
programs (applications). Because of the diversity of backgrounds expected in such an audience (from
Computer Scientists to Chemists to System Administrators), we try to err on the side of being verbose.

Experience with computer programming and chemistry is expected; in particular, you must be familiar with
your application language (FORTRAN, C, Pascal, etc.), and with basic chemical nomenclature. Familiarity
with data structures such as hash tables is helpful but not necessary, as is an acquaintance with the concept of
"Object Oriented Programming".

1.3 Other References

The Daylight Chemical Information Systems: Theory of Operation manual is background for this manual. A
thorough understanding of its contents is necessary before this material will make sense.

This manual is intended to serve as a tutorial introduction to toolkit programming. The on-line manual pages
serve as the authoritative reference for toolkit functionality and behavior.

This document is a companion to the Daylight Toolkit Reference Card, which contains exact specifications for
the functions available in the Daylight Toolkit, and comes in language-specific versions (C, FORTRAN, etc.).

The Daylight Toolkit also comes with a number of ready-to-compile example programs in the "contrib"
directory. These can be extremely useful as a starting point in working with the Toolkit. We suggest that you
glance through the examples before serious perusal of this manual to get an idea of what's there. The examples
may clarify many of the explanations given here.

Daylight Toolkit Programmers' Guide

1.1 Daylight Toolkit Modules 2

1.4 Conventions

Because the Daylight Toolkit is designed to work with a variety of languages, we use a generic or "function
prototype" technique to describe each function. For example, consider the following function prototype:

 dt_type(object ob) => integer

It translates to the following:

 C Prototype: int dt_type(dt_Handle ob)

 FORTRAN Prototype: integer function dt_type(ob)
 integer ob

NOTE: The actual function calls for a given language many be significantly different from
the "prototypes" shown in this manual. Consult the online man-pages for exact function
specifications.

In particular, strings are represented differently in most languages. For example, the function prototype:

 dt_stringvalue(Handle ob) => string s

would translate to the following C function:

 char *dt_stringvalue(int *len, dt_Handle ob)

Notice that the actual function doesn't even have the same number of parameters as the function prototype! In
general, you should read the manual to get the function's description, then refer to the Daylight Toolkit
Reference Card for the function's exact syntax.

Descriptions of functions that return strings often refer to the invalid string, which is often returned when a
function that returns a string detects an error. The specific definition of the invalid string is language
dependent.

1.5 Compiling and Linking

As a Daylight Toolkit programmer, you will compile source code to object code and link object code to an
executable binary using the Daylight Toolkit and operating system libraries. The following information shows
the syntax for building a Daylight Toolkit program.

1.5.1 Compiling

Let's say you have the following source code in a file named smiles.c:

#include <stdio.h>
#include <string.h>
#include "dt_smiles.h"

void main(int argc, char **argv) {
 dt_Handle mol;

 if (2 > argc)
 printf("Usage: %s <SMILES>",argv[0]);

Daylight Toolkit Programmers' Guide

1.4 Conventions 3

 else if (NULL_OB == (mol=dt_smilin(strlen(argv[1]),argv[1])))
 printf("SMILES is not valid.\n");
 else
 printf("SMILES is valid.\n");
 dt_dealloc(mol);
}

The syntax for compiling source code is:

compiler [options] file

The compiler typically is the operating system standard C-code (cc) or FORTRAN (f77) compiler, or the
GNU project C and C++ (gcc) or FORTRAN (g77) compiler.

The option to compile source code to object code is -c and the option to specify the directory location of
Daylight "#include" files is -I$DY_ROOT/include.

The file is smiles.c.

The following compiles the smiles.c source code to object code file and producing an object code file named
smiles.o.

cc -c -I$DY_ROOT/include smiles.c

1.5.2 Linking

Now, let's link the object code to an executable binary. The syntax for linking source code is:

compiler [options] file toolkits [libraries]

The compiler is the same as before.

The option to link object code to an executable binary is -o <filename>, e.g., -o smiles, and the option to
specify the directory location of the Daylight Toolkit libraries is -L$(DY_ROOT)/lib.

The file is smiles.o.

The toolkits define Daylight functions. In this case, the SMILES Toolkit is required by smiles.c (which calls
dt_smilin(3) and dt_dealloc(3)), and is specified by -ldt_smiles.

The libraries are not needed, as no operating system functions are used in smiles.c.

The following links the smiles.o object code to the the SMILES Toolkit, producing an executable binary file
named smiles.

cc -o smiles -L$(DY_ROOT)/lib smiles.o -ldt_smiles

Alternative, you may combine compile and link command, e.g.,

cc -o smiles -I$DY_ROOT/include -L$DY_ROOT/lib smiles.c -ldt_smiles

Daylight Toolkit Programmers' Guide

1.5.1 Compiling 4

http://www.daylight.com/dayhtml/doc/man/man3/dt_smilin.html
http://www.daylight.com/dayhtml/doc/man/man3/dt_dealloc.html

1.5.3 Toolkit Libraries

1.5.4 Advanced Programming

X libraries is -L$(XVIEW_LIB) -L$(X_LIB). The definition of XVIEW_LIB and X_LIB is operating
system dependent and shown in the table below:

Platform XVIEW_LIB X_LIB
Red Hat Linux/usr/openwin/lib/usr/X11/libSGI Irix 32-bit/usr/local/openwin/lib/usr/lib32SGI Irix
64-bit/usr/local/openwin/lib/usr/lib64SUN Solaris/usr/openwin/lib/usr/X/lib

The files are the object code, which may be several files. In this case, there's one file, smiles.o. The toolkits
required will depend on what parts of the Daylight Toolkit you use in your program. You can determine
which toolkits are required from the "Library Linkage" section of the Daylight Toolkit Functions manual
pages or visiting the Daylight website at http://www.daylight.com/dayhtml/doc/man/man3/index.html. The
syntax for linking to a library is -l<library> and multiple libraries must be linked in a specific order on IRIX
and Solaris (Linux excluded). Below is a list of Daylight Toolkits, library syntax and dependancies in the
order of required linkage.

Toolkit Syntax (DY_LIB) Dependancies
SMILES -ldt_smiles none
SMARTS -ldt_smarts -ldt_smiles
Fingerprint -ldt_finger -ldt_smiles
Reaction -ldt_smiles none
Reaction w/ Transforms -ldt_smarts -ldt_smiles
Thor -ldt_thor -ldt_ipcx -ldt_smiles
Merlin -ldt_merlin -ldt_ipcx -ldt_smarts -ldt_smiles
Rubicon -ldc_rube -ldt_depict -ldt_smarts -ldt_smiles
Program Object -ldt_progob -ldt_smiles
Grins Widget -ldw_xvgrins none
TDT Widget -ldw_xvtdt none
Basic Widget -ldw_xview none
Depict -ldt_depict none
"contrib" Depict -ldl_xview or -ldl_stubs none
"contrib -ldu none
none (for database definitions) -ldt_datatype none
none (for XView applications) -ldt_apputils none
Finally, the libraries required will depend on your use of X graphics and operating system routines. Some
Daylight Toolkits require X libraries (Depict Toolkit) and all require operating system libraries. Similar to
Toolkit libraries, the syntax for linking to a library is -l<library> and must be linked in a specific order.
Below is a list of X Graphics and operating systems and library syntax in the order of required linkage.

X Graphics Syntax (GFX_LIB)
XView -lxview -lolgx -lX11 -lXext
Operating System Syntax (OS_LIB)
Red Hat Linux -lnsl -ldl -lm

Daylight Toolkit Programmers' Guide

1.5.3 Toolkit Libraries 5

http://www.daylight.com/dayhtml/doc/man/man3/index.html

SGI Irix 32-bit -lsocket -lnsl -lw -ldl -lm -lmalloc
SGI Irix 64-bit -lsocket -lw -lm -lmalloc
SUN Solaris -lsocket -lnsl -lw -ldl -lintl -lm -lmalloc
Note: XView graphics is not available on SGI Irix 64-bit systems. Now we have all the information we need
to link together a Daylight Toolkit program. If you programmed use of all Daylight functions, the syntax for
linking a HelloWorld C program on a 32-bit SGI Irix would be: cc -o HelloWorld HelloWorld.c
$(DY_ROOT/lib) $(XVIEW_LIB) $(X_LIB) $(DY_LIB) $(GFX_LIB) $(OS_LIB)
${DY_ROOT}/contrib/lib/libdl_stubs

2. Basics: Daylight Toolkit Objects

2.1 Introduction to Objects

The Daylight Toolkit uses an object mechanism to simplify the task of programming for chemistry. We begin
with a short example that illustrates the object-aspects of the Daylight Toolkit (many other examples come on
the tapes with the Toolkits).

 /*--
 * thorload.c -- a simple program to load data into
 * a THOR database.
 ---/

 #include <dt_smiles.h>
 #include <dt_thor.h>

 main(int argc, char **argv)
 {
 dt_Handle server, db, tdt;
 char dbname, servername;
 char *tdtbuf;
 int tdtbufsize, tdtlen, isnew;

 /**** Specify the server (machine) and database name ***/
 servername = "my_machine_name";
 database = "medchem02demo";

 /**** Connect to server and open database ****/
 server = dt_thor_server(strlen(servername), servername,
 4, "thor", 4, "thor", 0, "");
 db = dt_open(server, strlen(dbname), dbname, 1, "w", 0, "", &isnew);

 /**** Load data until input is exhausted ****/
 while (1 == du_readtdt(stdin, &tdtlen, &tdtbuf, &tdtbufsize)) {
 tdt = dt_thor_str2tdt(db, tdtlen, tdtbuf, 1);
dt_thor_tdtput(tdt, 0);
 }

dt_dealloc(server);
 }

The important features of this example are:

The variables server, db and tdt are identifiers, or handles, that your code and the Daylight Toolkit
use to refer to an object (in this case, Thor server, Thor database, and Thor datatree objects,
respectively).

•

Daylight Toolkit Programmers' Guide

1.5.4 Advanced Programming 6

The handles themselves contain no information - they are not pointers to complex structures.•
The Daylight Toolkit manages the objects for you - you need not be concerned with details of how the
Toolkit represents the molecule or depiction.

•

Error handling is simplified: the NULL object (returned when errors are detected) is a valid handle
that refers to nothing. In the above example, the Daylight Toolkit will not generate fatal errors even
when the server can't be reached or the database can't be opened; it simply will not load anything.
Functions (not illustrated) are provided to retrieve error messages from the Toolkit.

•

Because objects are managed by the Daylight Toolkit, the interface to various programming
languages is straightforward: the Daylight Toolkit works equally well with C, FORTRAN, Pascal, or
LISP.

•

Many programmers will recognize the similarity of this approach to Object-Oriented Programming (OOP).
Although many of the ideas described here are borrowed from OOP, the Daylight Toolkit is not as complete
or complicated as a true OOP system. However,the Toolkit uses the following key OOP concepts:

You deal with objects:
Everything you work with, such as molecules, depictions, databases and THOR Data Trees, is an
object.

Objects are referenced by their handles:
An object is referred to by its handle; something the Toolkit gives you when you create the object.
This handle is typically an arbitrary 32-bit integer, but even this level of detail is irrelevant: it does not
matter to you what a handle is so long as you use it correctly.

Handles are opaque:
An object's handle is all you know about directly. The handle is opaque -- you can't see what is inside
the object it represents.

The Toolkit uses a strict functional interface:
You never work on data structures or "common blocks". Instead, you call Toolkit functions to create,
modify, use, and destroy Toolkit objects.

Objects are self-describing:
Each object "knows" what it is. Many Toolkit functions will take a variety of different object types
(they are polymorphic; see the chapter entitled POLYMORPHIC FUNCTIONS); the function "asks"
the object what type it is and performs the appropriate action.

2.2 Handles

As noted above, handles are the Toolkit's "name" for each object that it creates, and the handle is the only
thing your application program knows directly about the object's representation. Because objects are opaque,
it is irrelevant to you what a handle actually represents (in fact, different versions of the Toolkit use different
methods to assign handles to objects).

Although handles are opaque, they have several properties that are important to the application programmer.
These properties are the only ones that the Toolkit guarantees:

Uniqueness: Each handle is guaranteed to be unique at all times:

If two handles are equal, they refer to the same object.•
If two handles are not equal, they refer to different objects.•

Note that uniqueness is not guaranteed over time: the Toolkit may re-use a handle if the original object it
represents is discarded.

Daylight Toolkit Programmers' Guide

2.1 Introduction to Objects 7

Revocation: Some toolkit functions cause previously-returned handles to become invalid. For example, the
handle for an object becomes invalid if the object is removed from the system with dt_dealloc(). A handle that
has become invalid in this way is said to have been revoked. Generally speaking, all operations on revoked
handles produce undefined results. It is up to the application programmer to guarantee that revoked handles
are not used. For functions that cause revocations, the specific description of each function in the Daylight
Programmer's Reference Manual will say exactly which handles are revoked.

Vigilance: To assist programmers during code development, "vigilant" versions of the Daylight Toolkit are
available. These versions may be able to detect the use of an invalid handle. In other words, some toolkit
implementations do define a behavior when an operation is applied to a revoked handle. In such vigilant
versions, passing a revoked handle to a toolkit function will cause an error return. For extra help in detecting
errors, a function named dt_invalid() may be used to test the validity of a handle; it is explained more fully in
the chapter entitled POLYMORPHIC FUNCTIONS. A second vigilance function, dt_vh_stop_here(), is
provided for use with a debugger. The Toolkit calls this function when an invalid handle is detected.

2.3 Object Types

The Daylight Toolkit supports a small number of object types. These are divided into several sections,
corresponding to the Toolkit's parts (e.g. SMILES, Depict, THOR, etc.). Each of these object types is
explained in more detail in the chapter for that section of the Daylight Toolkit; here we give an abbreviated
list as an introduction to the object-type concept.

General:

stream
An ordered enumeration of objects from a base object

sequence
an ordered sequence of objects of any type

SMILES:

molecule
a molecule structure

atom
an atom in a molecule

bond
a bond in a molecule

cycle
a cycle in a molecule

Depict:

depiction
a 2-d representation of a molecule

conformation
a 3-d representation of a molecule

THOR

server
a connection to a THOR server process

Daylight Toolkit Programmers' Guide

2.2 Handles 8

database
a database of chemical information

datatree
a single entry from a database

dataitem
a datum from a datatree

Each of the above object types is represented by a symbolic constant:

Object Type Symbolic Name
server TYP_SERVER
stream TYP_STREAM
molecule TYP_MOLECULE

and so forth. The exact symbolic names for each object type can be found in the Daylight Programmer's
Reference Manual.

There are two "pseudo object" types: TYP_ANY and TYP_INVALID. The pseudo object type TYP_ANY is
used when any object is acceptable. Since it is a pseudo object type, there are no actual objects of type
TYP_ANY. Similarly, TYP_INVALID may be returned by functions to indicate that the specified object is
unknown or incorrect. There are no actual objects of type TYP_INVALID.

2.4 The NULL_OB Handle

One special handle value is used to represent "nothing"; it indicates that no object is present. It is called the
null object, and its handle is represented by the symbolic constant NULL_OB. A handle whose value is
NULL_OB is a valid handle, but it does not refer to any object and it has no type.

NULL_OB plays a special role in the Daylight Toolkit: Functions that return objects will return NULL_OB if
an error occurs, and functions that take object parameters will accept NULL_OB as a valid handle (they
ignore it and do nothing). This means that error management in applications that use the Toolkit is somewhat
simplified -- in many cases the handle returned by one function can be safely passed to the next function
whether the first function failed (returned NULL_OB) or succeeded (returned a handle to a real object). It is
safe to pass NULL_OB anywhere a handle is expected. See the chapter on error handling for more discussion
of this topic.

NOTE: In current implementations, NULL_OB is defined to be zero. However, there is no guarantee that this
will always be the case. Application programs should explicitly compare for equality or inequality to
NULL_OB rather than using constructs like "if (!my_handle) ...". Programs that assume NULL_OB is zero
are explicitly non-portable.

2.5 Daylight Version Handling

The Daylight Toolkit has both Runtime version handling and Compile time version handling. The runtime
version handling can be used in the user code to show which version of the runtime libraries are currently
being used. The user code can compare the version number to the current Daylight release version and if it is
different print an error message describing version inconsistency along with a suggestion to check
LD_LIBRARY_PATH which tells the code which runtime libraries to use.

Daylight Toolkit Programmers' Guide

2.3 Object Types 9

The runtime version and creation date can be accessed with the dt_info() function. If the dt_info() function is
called with the "toolkit_version" parameter with the runtime libraries made with version 4.81 or later it will
return a version number. Any libraries made prior to 4.81 will return NULL.

The compile time versions refer to when the entire toolkit was compiled. These versions are described in
dt_smiles.h with DX_TOOLKIT_VERSION and DX_TOOLKIT_DATE. These are also the versions
numbers and dates that are referenced in the man pages and other Daylight documentation.

The user can use DX_TOOLKIT_DATE and DX_TOOLKIT_VERSION to ensure that they are compiling
their code with the correct runtime libraries.

Example of using runtime and compile time versions.

 int main()
 {
 ...
 rver = dt_info(&rlen, NULL_OB, "toolkit_version");
 if (rver == NULL)
 printf(stderr, "WARNING: you're using an older (pre-4.8) "
 "toolkit runtime library, check LD_LIBRARY_PATH");

 else if (0 != strncmp(rver, DX_TOOLKIT_VERSION, rlen)))
 printf(stderr, "You compiled this program with "
 "version %s but are running it against the "
 "%.*s toolkit runtime library.\n", DX_TOOLKIT_VERSION,
 rlen, rver);
 }

3. Basics: Polymorphic Functions

3.1 Polymorphism

There are many functions, such as counting, copying, deallocating, and naming, that can be applied to several
different types of objects. We refer to these functions as polymorphic.

The idea of a polymorphic function might seem foreign at first, but it is actually quite familiar to all
programmers. Take, for example, the "*" operator in FORTRAN. When applied to two numbers, we expect it
to cause the two numbers to be multiplied. However, on closer inspection, the "*" operator turns out to be
polymorphic: it can be applied to integers, single-precision floating-point numbers, double- precision
floating-point numbers, and complex numbers.

The difference between the FORTRAN style of polymorphism and that employed by the Daylight Toolkit is
only that the nature of the operation is determined at run time rather than at compile time. That is, the
FORTRAN compiler looks at the operands and decides which of several functions to apply, then generates the
appropriate code; at run-time the decision as to which function to apply has already been made. In the
Daylight Toolkit, a dispatch function examines the object of interest and decides "on the spot" (i.e. at run
time) which function to apply.

Not all polymorphic functions can be applied to all objects. The following two sections respectively describe
"generic" polymorphic functions (those that apply to all objects) and "semi-generic" polymorphic objects
(those that could apply to more than one object but not to all objects).

Daylight Toolkit Programmers' Guide

2.5 Daylight Version Handling 10

NOTE: The specific behavior of polymorhic functions when given different object types is rigorously defined
in the reference manual pages.

As a simple example of the power of polymorphism, the following function accepts any object and prints out
all of its string value(s):

 dt_Integer dump_strings(dt_Handle ob) {
 dt_Handle m, d;
 dt_String line;
 dt_Integer len;

 /* Get the stringvalue */
 line = dt_stringvalue(&len, ob);

 /* If the object has one, print it. */
 if (line != NULL)
 fprintf(stderr, "Stringvalue is: %.*s\n", len, line);

 /* Check to see if the object is a stream or sequence. If
 so, examine the members also.*/
 if ((dt_type(ob) == TYP_STREAM) ||
 (dt_type(ob) == TYP_SEQUENCE))
 {

dt_reset(ob);
 while (NULL_OB != (m = dt_next(ob)) && !dt_atend(ob))
 dump_string(m); /* Call recursively for each member. */
 }
 return (TRUE);
 }

The important features of this example are:

The function need not know in advance the type of object which may be used in this function. The
only exception is in cases where special processing is desired (here, for streams and sequences).

•

If dt_stringvalue() fails, we don't do anything special. It simply means that the given object doesn't
have a string value, or doesn't respond to the dt_stringvalue() function. In either event, we continue.

•

3.2 Generic Functions

The following work on all Daylight Toolkit objects.

dt_adjunct(Handle ob) => object
Retrieve the adjunct object associated with ob (see dt_setadjunct()).

dt_invalid(Handle ob) => boolean
If the Daylight Toolkit is of the "vigilant" type and can determine that the given handle ob is invalid,
return TRUE. Otherwise return FALSE.

dt_setadjunct(Handle ob, object adjunct_ob) => object
Makes adjunct_ob the adjunct of ob -- a simple mechanism to let one object "point" to another.

dt_type(Handle ob) => integer
Return the type of the given object, represented as an integer.

dt_typename(Handle ob) => string
Return a string naming the type of the given object, e.g. "molecule" for a molecule object.

Daylight Toolkit Programmers' Guide

3.1 Polymorphism 11

3.3 Semi-Generic Functions

The following functions are generic in that they apply to more than one object type, but there may be object
types to which they do not apply.

dt_add(Handle set, Handle object) => boolean
Adds object to set.

dt_base(Handle ob) => object
Returns the base object -- the object from which ob was derived. Examples of objects that have a base
object are: depictions and conformations (base object is a molecule); and streams (base objects are
molecules, THOR data trees, etc.).

dt_copy(Handle ob) => object
Returns a handle for a copy of the given object. A copy of an object shares no structure with the
original. A copy of an object is guaranteed to behave exactly like the original in every respect.

dt_count(Handle ob, integer typeval) => integer
Counts and returns the number of objects of the specified type within or associated with the object ob.

dt_dealloc(Handle ob) => boolean
The given object is removed from the system and its handle is revoked. Frees all resources used by
the object (memory, open files, etc.). Once revoked, a handle must not be used; doing so has
undefined results, which may include "crashes" of the Toolkit.

dt_info(Handle ob, string whatinfo) => string
Return information about an object. Many objects have special properties in the sense that they are
not set by Toolkit functions, but rather arise from external sources. An example is a THOR database:
a call to dt_info(db_handle, "users") will return a string containing the names of all other users who
currently have the database open. Using dt_info with a NULL_OB will return information about the
runtime library that is currently being used. Using "creation_date" as the string will return the creation
date of the runtime library and using "toolkit_version" will return the toolkit version number.

dt_member(Handle set, Handle object) => boolean
Returns TRUE if the given object is a member of the set.

dt_molecule(Handle ob) => molecule
Some objects (e.g. THOR Data Trees) have a "hidden" molecule object associated with them. It is
often convenient to use this molecule object rather than re-creating it; for example, when you want a
unique SMILES (dt_cansmiles()) for the object of interest. This function will return the hidden
molecule's handle.

dt_parent(Handle ob) => object
Returns the parent of the specified object. Examples of objects that have parents are: atoms and bonds
(parent is a molecule object); THOR data tree (parent is the database from which the data was
retrieved).

dt_remove(Handle set, Handle object) => boolean
Removes object from the set.

dt_setstringvalue(Handle strobj, string str) => boolean
Changes an object's contents to the specified string. Several objects, include string objects, THOR
datatree objects, and Fingerprint objects, have a string value that can be set by this function.

The object maintains its own copy of str, so the contents of str need not be maintained after calling
this function. Note that not all objects that return a string (see dt_stringvalue()) allow you to set the
string value; in some cases the string value is derived from other properties.

dt_stringvalue(Handle ob) => string
Returns the string value of the object. Many objects, include string objects, THOR objects, and
Fingerprint objects, have a string value that can be accessed by this function.

Daylight Toolkit Programmers' Guide

3.3 Semi-Generic Functions 12

The string returned by this function is "owned" by the Toolkit, and should not be modified in any way
by the application. For example, attempting to directly overwrite the contents of a string object is an
error -- although it may work in one implementation or with one particular language, it is an
unsupported operation and may fail in future releases of the Toolkit or with compilers on different
operating systems. One should always use dt_setstringvalue() to change an object's contents.

dt_stream(Handle ob, integer typecode) => stream
This polymorphic function is described in detail in the chapter on Stream and Sequence objects.

4. Error handling

4.1 Introduction

Using an object-oriented approach to programming interfaces can make error-handling much simpler. For
example, the NULL_OB is used extensively as a returned object under conditions where a function does not
return a 'valid' object. Initially, one might reasonably think of the return of the null object as an indication of
failure of the function, or a flag that an invalid operation was attempted. Using a traditional procedural
programming approach, this is a perfectly normal way to think about the NULL_OB.

The departure from traditional error handling comes when one examines the NULL_OB itself. The
NULL_OB is a perfectly valid object in the toolkit (as valid as any other object). The NULL_OB is defined to
have all of the properties of 'normal' objects, and can be passed legally to any toolkit function as an object
parameter. This is completely different from the error-handling techniques used for procedural programming.
In procedural programming, errors must be trapped immediately after they occur, because functions
downstream of the error can exhibit undefined or invalid behaviors.

Herein lies one of the strengths of the object-oriented programming approach. Error trapping need not be
performed after every function, but only when errors that significantly affect the operation of the program
may occur. That is, several toolkit functions can be considered a functional block from an error-trapping
perspective. The advantage is that normal processing incurs less overhead for error detection. The overhead is
only incurred when necessary and most of the overhead is outside of the normal stream of processing.

The following trivial example illustrates the point. It only checks for abnormal conditions after executing
several dependent toolkit functions:

 #include "dt_smiles.h"

 dt_Handle make_integer(dt_Integer value, dt_Handle itsadjunct) {
 dt_Handle intob, rcob;
 dt_Boolean rc;

 /* Do the work */
 intob = dt_alloc_integer();
 rc = dt_setintegervalue(intob, value);
 rcob = dt_setadjunct(intob, itsadjunct;

 /* If everything worked, return. */
 if (rc && (rcob != NULL_OB))
 return (rcob); /* m is the same as rcob */

dt_dealloc(intob);

Daylight Toolkit Programmers' Guide

4. Error handling 13

 /* What type of error was found??.*/
 if (intob == NULL_OB) {
 fprintf(stderr, "Couldn't allocate object.\n");
 return (NULL_OB);
 }
 if (rc == FALSE) {
 fprintf(stderr, "Couldn't set integer value.\n");
 return (NULL_OB);
 }
 if (rcob == NULL_OB) {
 fprintf(stderr, "Couldn't set adjunct.\n");
 return (NULL_OB);
 }
 }

The important features of this example are:

This example is overkill. In most cases, it would be preferable to simply free the integer object and
return NULL_OB if any failure occured. We can successfully ignore all of the errors that may occur.

•

dt_dealloc() is invoked to try to free the integer object. Note that we don't bother to check or keep
track of whether or not any object was successfully allocated. If there isn't any object to deallocate,
the dt_dealloc() doesn't do anything.

•

4.2 General approach

There are two fundamental principles which dictate the Daylight Toolkit approach to function operation. They
are that:

all toolkit functions are valid for all object types,•
all object properties are defined for all object types.•

The implication of these principles is that by definition, most Daylight Toolkit functions always succeed. This
does not mean that all combinations of functions and objects make sense, but there is rarely a danger of
causing an error or corrupting the Daylight Toolkit by calling a function with any arbitrary object.
Furthermore, the results of all functions are rigorously defined for all objects. In most cases, the most dire
consequence of an inappropriate object/function combination is that the function is ignored.

4.3 Function types

The Daylight Toolkit functions can be divided into classes based on the type of operation that they are
performing, and the returned type. There are three types of operations performed by Daylight Toolkit
functions:

Functions which create objects1.
Functions which get the properties of objects2.
Functions which modify the properties of objects.3.

4.3.1 Functions which create objects

These functions always succeed and return an object. The object will be the NULL_OB if the attempted
creation of an object is not appropriate for the given combination of arguements.

Daylight Toolkit Programmers' Guide

4.1 Introduction 14

Examples: dt_alloc_mol(), dt_open(), dt_addatom().

4.3.2 Functions which get the properties of objects

These functions always succeed (by definition), and will return the defined property for the object. Since all
properties are defined for all objects, the programmer is responsible for the object types passed to functions.
For example, dt_aromatic(server) is defined as FALSE, and the programmer is responsible for recognizing
this 'nonsensical' case and avoiding it in applications. The main way to do this is to define the valid object
types for user-written polymorphic functions and check that the parameter types are valid. This level of rigor
is typically only necessary for debugging and for some special applciations where it is critical to avoid
ambiguities. For example:

 #define NOT_A_RING -1
 #define IS_AROMATIC_RING 1
 #define NOT_AROMATIC_RING 0

 dt_Integer is_ring_aromatic(dt_Handle object)
 {
 dt_Boolean rc;
 if (dt_type(object) != TYP_CYCLE)
 return NOT_A_RING;
 if (dt_aromatic(object))
 return IS_AROMATIC_RING;
 else
 return NOT_AROMATIC_RING;
 }

Without the prior object-type checking, the function is_ring_aromatic() would return
NOT_AROMATIC_RING if given a server, database, non-aromatic bond, etc. The function does not fail if
the object-type checking is not performed, but the results may not be as intended.

Note also that functions which return streams or sequences are considered functions which return object
properties. Although they typically create a new stream or sequence object, the stream or sequence contains a
set of properties of the object given as a parameter. None of the functions in this class will return an empty
stream or sequence; they will either return a stream or sequence with one or more members, or they will return
the NULL_OB.

Examples: dt_aromatic(), dt_fp_tanimoto(), dt_symbol(), dt_invalid(), dt_mer_sortapplies(), dt_xatom(),
dt_getdatabases(), dt_charge().

4.3.3 Functions which modify the properties of objects

These functions are defined to be valid for all object types but may or may not succeed. In all but a few cases,
this class of function returns a boolean. These functions will return TRUE if the operation succeeded and if
the property was set and FALSE if the property was not set. As with functions which get the properties of
objects, checking the type of the object parameters is the sole required safeguard.

Examples: dt_calcxy(), dt_rotate(), dt_fp_fold(), dt_setaromatic(), dt_add().

4.3.4. Exceptions

Several functions both modify and return properties. (eg. dt_fp_setminsize()) These typically take a property
value and return the property value after the new value is applied. If the new value is not appropriate and the

Daylight Toolkit Programmers' Guide

4.3.1 Functions which create objects 15

modification of the property fails, then the property value returned is the value that had been set prior to the
function.

Merlin hitlist operations can both modify and return properties of hitlist objects. These functions typically
perform an operation, and then return the size of the hitlist (which may have been altered by the function).

Functions operating on sets modify the contents, but return the object that was modified, as opposed to a
boolean for success or failure (dt_add(), dt_append(), dt_insert(), dt_setadjunct()). In some cases, a duplicate
object is created and added to the set. The returned object is newly created member of the set. This is the case
for paths in pathsets. Otherwise, the functions return the handle of the object to which the new object was
added.

Functions which return streams or sequences appear ambiguous. Some cases are clearly returning properties
(dt_getdatabases()), others less so (dt_match()). In an abstract sense, one can think of these as cases of 'lazy'
evaluation. In the case of dt_match(), we could argue that the resulting pathset is a property of the molecule
and pattern, even though the pathset is not evaluated until the dt_match() function is called. (A stretch,
perhaps).

4.4 Function return types

In addition to considering the operation which each function performs, we can consider the specific returned
type from each function. There are five types of returned values from toolkit functions:

dt_Boolean•
dt_Handle•
dt_Integer•
dt_Real•
dt_String•

Each returned type has a specific value which indicates an abnormal condition.

4.4.1 Functions which return dt_Boolean

These functions are one of two cases: functions returning boolean properties, and functions returning
success/failure when setting a property. There are quite a few boolean properties of objects (such as aromatic,
atstart, mod_is_on). For each of these functions, the man page enumerates all of the object types which may
have a TRUE value for each property. All other objects for a given property have been defined such that the
property is always FALSE.

All of the functions which are used to set object properies return TRUE or FALSE depending on the success
or failure of the operation. The man page enumerates the objects whose properties may be modified for each
function of this type.

4.4.2 Functions which return dt_Integer

These functions all return integer properties of an object or are hybrid functions that modify and then return a
property of an object. The man page erumerates all of the object types which will return useful integer
properties. By definition, the integer properties of all other object types are defined as -1.

Exceptions include merlin hitlist operations, which modify a hitlist and return its length, dt_ping(), which
performs an 'external' operation (it does not operate directly on objects), the (obsolete) fingerprint functions to

Daylight Toolkit Programmers' Guide

4.3.4. Exceptions 16

set global options (e.g. dt_fp_setminsize()), which set a value and return the new value, and dt_thor_tdtput()
which returns the success or failure of the operation, but uses an integer because of the need for success /
failure / timestamp-out-of-date.

4.4.3 Functions which return dt_Real

These functions all return a real property for an object. For each of these functions, the man page enumerates
the object types which have modifiable real properties. The real properties for all other object types are
defined to be -1.0.

The one exception is dt_fp_setmindensity(), which modifies a property and then returns the new value of that
property.

4.4.4 Functions which return dt_String

All of these functions return the string property of an object. For each of these functions, the man page
enumerates the object types which have modifiable string properties. The string properties for all other object
types are defined as the invalid string.

4.4.5 Functions which return dt_Handle

These functions either create new objects or return the object properties of objects. For each of the functions
which get the object properties of objects, the man page enumerates the object types which have modifiable
object properties. The object properties for all other objects are defined as the NULL_OB.

The exceptions are functions which modify sets(dt_add(), dt_insert(), dt_append()). They modify the set, and
return either the given set or a copy of the object which was added to the set depending on the context.

4.5 Error message facilities

Various Daylight Toolkit operations can result in errors. The errors typically encountered are a direct result of
external interactions of the Toolkit of three general types: failures of input of external data as part of the
creation of objects, failures of communications with external resources (servers, toolkits, databases), and
exhaustion of resources available to the Toolkit (out of memory).

Failures of parsing of external data (eg. parsing SMILES for dt_smilin) typically result in diagnostic messages
which allow debugging the external data expression. Failure of external communication and exhaustion of
Toolkit resources are provided primarily for graceful termination of application. The Daylight Toolkit
provides several functions to access and clear the Toolkit- provided diagnostic messages, and to add your own
diagnostic messages to the Toolkit's queue.

The error-handling functions maintain a queue of approximately 200 error messages. If this error queue
overflows, the last message in the queue is lost and the newest message replaces it.

There are several levels of error message:

Error Level Explanation
DX_ERR_NONE No error.
DX_ERR_NOTE Something that might or might not be of interest, but not an error.
DX_ERR_WARNING Something abnormal that may require attention

Daylight Toolkit Programmers' Guide

4.4.2 Functions which return dt_Integer 17

DX_ERR_ERROR The requested operation could not be carried out
DX_ERR_FATAL A serious error was detected; the Toolkit cannot continue.

A "fatal" error does not actually cause the application program to quit; you have time to clean up, close files
and warn the user that something serious has occured. However, once a fatal error has occurred, the Toolkit's
ability to continue correctly is doubtful.

Note also that a fatal error may not be reported correctly since many fatal errors involve a memory allocation
failure. The error- reporting functions may fail to allocate memory needed to record the error messages,
resulting in lost error messages.

dt_errorclear() => void
Discard all error messages and clear the error queue.

dt_errorworst() => integer
Returns the error level of the worst error recorded by dt_errorsave() since the last call to
dt_errorclear() or since the application program started. A return value of DX_ERR_NONE indicates
that no errors have been recorded.

dt_errorsave(string func_name, integer level, string message) => integer
Store the error message at level in the error queue. The parameter func_name is also stored;
typically it is the name of the function in which the error was detected. func_name is printed in
parentheses after the error message by dt_errors().

dt_errors(integer level) => Handle sequence
Return all errors of severity level or worse (higher); if level is zero, all notes, errors and warnings are
returned. The returned sequence is a sequence of string objects, in generation order.

The sequence and string objects are newly-allocated copies of the error queue; it is the responsibility
of the calling function to eventually deallocate the sequence object and all of the string objects it
contains.

dt_smilinerrors() => Handle sequence
Like dt_errors(), above, but returns errors related to SMILES parsing. Prior to version 4.91 this was
handled separately than the regular error queue. Starting with version 4.91 this function is identical to
dt_error(DX_ERR_NOTE).

5. Basics: String and Number Objects

As a convenience, the Daylight Toolkits provide object to hold "ordinary" data -- strings, integers, and
floating-point numbers. There is nothing fancy about these objects -- they simply hold a string or numeric
value. However, the ability to represent strings and numbers as Toolkit objects makes it possible to attach all
kinds of information (e.g. atomic properties, labels, etc.) to other objects, such as atoms, bonds, and
molecules. The functions dt_adjunct() and dt_setadjunct() are particularly useful with these simple objects.

5.1 String Objects

A string object is a simple Toolkit object that holds the characters in a string, and the string's length. The
Toolkit's concept of a "string" is a series of arbitrary 8-bit values and a length. Note, in particular, that the
string is not assumed to be null-terminated, padded with blanks, or other application-language-dependent
standards. For example, it is permissible to store arbitrary, or "binary" data in a string object as long as it can
be represented as a series of bytes with no machine-dependent word-alignment assumptions.

Daylight Toolkit Programmers' Guide

4.5 Error message facilities 18

(Note: Many Toolkit functions return strings. Don't confuse this with functions that return string objects. If a
function returns a string object, then the function's return type will be a Handle.)

There is only one function specific to string objects:

dt_alloc_string(string s) => ob
Creates a string object whose contents are identical to s. The string object contains a copy of s rather
than a pointer to s, so the application program can discard the original string after calling this
function. If s is the invalid string, the string object's contents will be the invalid string.

A string-object's contents can also be modified via the function dt_setstringvalue(), and retrieved with the
function dt_stringvalue(); both are discussed in the previous section.

5.2 Integer and Real Number Objects

Integer- and Real-number objects are similar in concept to the string objects described above. Each object
type holds a simple number. The following functions operate on these objects:

dt_alloc_integer() => Handle integer_ob
Allocates an integer number object. The object's initial value is zero.

dt_alloc_real() => Handle real_ob
Allocates a real-number object. The object's initial value is zero.

dt_setintegervalue(Handle intob, integer value) => boolean ok
Sets the object's value to value.

dt_setrealvalue(Handle realob, real value) => boolean ok
Sets the object's value to value.

dt_integervalue(Handle intob) => integer i
Returns the integer-object's value.

dt_realvalue(Handle realob) => real r
Returns the real-object's value.

5.3 Binary-Data Functions

It is often convenient to use string objects to store "binary" data -- data that are not intended to be printed, and
that may contain "NULL" characters and so forth. However, it is also convenient to be able to represent these
binary data as printable ASCII characters. For example, Daylight's THOR database system can store arbitrary
binary data, but needs to be able to represent it lexically with a restricted set of printable characters.

Three "convenience" functions are provided to convert binary data to printable ASCII and back again. The
conversion used maps each 3 bytes of binary data into 4 bytes of ASCII data (i.e. 4 groups of 6 bits are
converted to 4 ASCII characters). The ASCII representation has a trailing byte indicating how many of the
last 3 binary bytes are part of the original binary data.

Note that these functions take strings, not string objects, as their inputs, and return string objects, not strings.

dt_ascii2binary(string ascii) => handle string_ob
Convert a binary string to its ASCII representation; returns a newly- allocated string object.

dt_binary2ascii(string binary) => handle string_ob
Convert an ascii representation back to its binary form; returns a newly-allocated string object.

dt_binary2asciilen(string binary) => integer

Daylight Toolkit Programmers' Guide

5.1 String Objects 19

Returns the length of the string that dt_binary2ascii() would return, but without allocating any object.

6. Basics: Streams and Sequences

It is often useful to perform some operation iteratively over the constituent parts of an object; for example,
one might want to examine the properties of each atom or bond of a molecule. Two special object types, the
stream and the sequence, provide a mechanism for doing this conveniently. Conceptually, a stream or a
sequence is an ordered group of objects with a current position in the order.

(Note: To clarify this concept, it is not the same as a set, since one object can appear several times; nor is it
like LISP's list, as sequences can't be appended to one another, and there is no concept of the "tail" of a
sequence being a valid sequence.)

6.1 Properties

6.1.1 Stream Properties

Streams are used to enumerate the constituent parts of complex objects such as molecules, and are often the
only way these constituent parts can be accessed. For example, if m is a molecule object, invoking

 atoms = dt_stream(m, TYP_ATOM)

returns a stream containing all of the atoms in the molecule.

Streams are deliberately limited in their capabilities in order to make them "cheap" (creating a stream of
atoms as illustrated above takes very little computing time). In addition to the polymorphic functions that
apply to all objects (described in the chapter entitled POLYMORPHIC FUNCTIONS), there are only four
operations on streams:

create a stream•
reset the stream's position to the beginning•
get the next item in a stream•
ask if the stream's position is at its end•

Streams usually have a base object -- the object from which they are derived (see dt_base()). Most streams
have one base object, and are deallocated if the base object is changed in a way that makes the stream invalid.
For example, a stream of atoms from a molecule is deallocated if a new atom or bond is added to the
molecule.

Streams have several important properties:

dt_next(s) always returns objects in the same order. That is, you can step through the stream, reset it,
and step through again with the same results.

•

Two streams of the same type with the same base object will both return their objects in the same
order.

•

A copy of a stream behaves identically to the original. This is true even when a copy is made in the
middle of an enumeration; in this case dt_next(copy) will continue the enumeration in the middle of
the stream exactly as dt_next(orig) will.

•

Daylight Toolkit Programmers' Guide

5.3 Binary-Data Functions 20

A stream is deallocated (the stream-object is thrown away and its handle revoked) if the base object
(the object from which it is derived) is modified. For example, an atom-object stream is deallocated
when the molecule containing the atoms is deallocated or structurally modified.

•

6.1.2Sequence Properties

The properties of a sequence are a superset of stream properties; in addition to those listed above, sequences
can perform the following operations:

ask if the sequence is at its beginning•
insert an object at the current location•
delete the object from the current location•
add an item to the end of the sequence•
go directly to the end of the sequence•

6.1.3 Example

The following short code fragment illustrates how one might create both a stream and a sequence. Both the
stream and the sequence will contain all the atom-objects from the molecule, but the sequence can later be
modified if desired (the function dt_smilin() is documented in a later chapter).

 #include <dt_smiles.h>
 ...
 char smiles[20];
 dt_Handle strm, seq, mol, atom;

 /**** create a stream of the atoms in benzene ****/
 strcpy(smiles, "c1ccccc1");
 mol = dt_smilin(strlen(smiles), smiles);
 strm = dt_stream(mol,TYP_ATOM);

 /**** copy the atoms from the stream into a sequence ****/
 seq = dt_alloc_seq();
 while (NULL_OB != (atom = dt_next(strm)))

dt_append(seq, atom);
 ...

Several other example programs that make use of sequences are supplied in the Daylight "contrib" directory
($DY_ROOT/contrib).

6.2 Functions on Streams and Sequences

dt_alloc_seq() => sequence
Return a new, empty sequence.

dt_stream(Handle ob, integer typeval) =>stream
Returns a stream (an enumeration) of all parts of type typeval within the object ob.

dt_next(Handle s) => object
Return the next object in the sequence or stream. Return NULL_OB if all items of the stream or
sequence have already been returned.

dt_atend(Handle s) => boolean
Returns TRUE if the most recent call to dt_next(s) returned NULL_OB because the end of the stream
or sequence was reached. This is useful in cases where a sequence might contain NULL_OB as a
valid item.

Daylight Toolkit Programmers' Guide

6.1.1 Stream Properties 21

If dt_next() has not yet been called for the given sequence or stream, or has not been called since the
last call to dt_reset() (or any other function that resets the sequence), dt_atend() will return FALSE,
even if the sequence or stream is empty. Note that if the most recent call to dt_next() returned
something other than NULL_OB, then dt_atend() will necessarily return FALSE.

dt_reset(Handle s) => boolean
Resets the sequence or stream so that it begins again with the first item.

6.3 Functions on Sequences Only

The following functions only apply to sequences; they modify a sequence or otherwise perform "direct
access" to the objects it contains.

These functions use the concept of a current object. The current object is the one that was most recently
returned by dt_next(). When dt_reset() is called, the current object is thought to be an imaginary object before
the first actual object; if the dt_next() reaches the end of the sequence, the current object is thought to be an
imaginary object after the last object of the sequence.

dt_append(Handle seq, object ob) => sequence
Adds ob to the end of seq; ob may be any valid Handle to an object including the value NULL_OB.
Return the (modified) sequence. This function also resets the sequence; that is, it has the effect of
dt_reset().

Note that, like dt_insert(), it is permissible to add NULL_OB to a sequence; the NULL_OB handle
takes a spot like any other handle. When NULL_OB is an item in a sequence, dt_atend() is required to
distinguish between the NULL_OB returned when the end-of-sequence is reached and the NULL_OB
handles that are part of the sequence.

dt_atstart(Handle seq) => boolean
Returns TRUE if the sequence is reset (if the next call to dt_next(seq) would return the first object in
seq).

dt_delete(Handle seq)
Deletes the current object of the sequence (i.e. the last one returned by dt_next()); make the object
that preceded the deleted object be the new current object. dt_next() will return the same value it
would have before the deletion occurred.

dt_insert(Handle seq, object ob) => sequence
Inserts ob in the sequence before the current object; the newly- inserted object becomes the current
object.

The new object is inserted before the object most recently returned by dt_next(), or at the start of the
sequence if dt_reset() was the last operation, or at the end of the sequence if dt_atend() would return
TRUE.

Note that dt_next() will return the same value it would have before the insertion occurred. A sequence
that is reset when an insertion is made is not reset after the insertion, since the newly-inserted object
becomes the current object.

It is permissible for ob to be NULL_OB; in this case, the NULL_OB handle takes a spot in the
sequence. When NULL_OB is an item in a sequence, dt_atend() is required to distinguish the
NULL_OB returned when the end-of-sequence is reached from NULL_OB handles that are part of
the sequence.

dt_toend(Handle seq)

Daylight Toolkit Programmers' Guide

6.2 Functions on Streams and Sequences 22

7. SMILES Toolkit: Molecules

A molecule object represents the atoms, bonds, cycles and chiral centers of a molecule. Because it is
such a fundamental object in computational chemistry, there are more functions that operate on
molecules than any other object. One can:

Produce a molecule from a SMILES string.◊
Produce a SMILES string or a unique SMILES string from a molecule.◊
Build a molecule "from scratch" using functions to create an empty molecule, then adding
atoms and bonds.

◊

Add and delete atoms and bonds.◊
Change the properties of atoms and bonds.◊
Test for aromaticity of a molecule, atom, or bond. Aromaticity is determined automatically
for Kekulé structures.

◊

Find symmetry classes for atoms.◊
Tests for and set chiral features.◊
Generate streams of the atoms, bond, and cycles of a molecule, and streams of atoms of a
cycle, bonds of a cycle, and so forth.

◊

7.1 Creating Molecules

There are two ways to create a molecule object: "From scratch" (allocate an empty molecule), and by
parsing a SMILES string:

dt_alloc_mol() => molecule
Returns a new, empty molecule.

dt_smilin(string smiles) => molecule
Interprets the given SMILES string and return a handle for the resulting molecule structure.

Efficiency Note: The Toolkit's internal representation of molecule objects is designed for efficient
analysis of the molecule's properties, and for responding to queries about the molecule quickly. It is
not intended to be a compact representation of the molecule, and uses many times more memory to
store than a compact representation such as a SMILES string. Applications that require many
thousands of molecules in memory simultaneously should use a more compact representation for
those molecules that are not of immediate interest.

7.2 Constituents of a Molecule

These functions provide ways to enumerate (generate streams of) the atoms, bonds, cycles, and chiral
features of molecules. Also included are two functions, dt_bond() and dt_xatom(), for accessing
related constituents without the necessity of creating a stream.

dt_stream(Handle ob, integer typeval) => stream
Generate a stream of atoms, bonds or cycles -- a stream that contains all of the objects of the
specified type that are part of the object.

Object can be a molecule, atom, bond or cycle. For example, a stream of
dt_stream(bond, TYP_ATOM) returns the two atoms at either end of the bond; a
stream of dt_stream(cycle, TYP_BOND) returns all the bonds that are part of the
cycle.

Daylight Toolkit Programmers' Guide

7. SMILES Toolkit: Molecules 23

Note: remember, dt_stream() is polymorphic -- it applies to other objects, too. Here, we
are only discussing the molecule and its constituent parts.

dt_canstream(Handle object,Integer type, boolean iso, boolean addh)
=> stream

Allocates a stream of type 'type', in canonical order, for the molecule or reaction 'object'.
Object can be a molecule, atom, bond or cycle.

dt_origstream(Handle object,Integer type) => stream
Returns a stream of objects in which the objects appear in "original" order. That is, dt_next()
will return atoms in the same order as they appear in the original string used to create the
object molecule via dt_smilin(), or in the order in which they were added to molecule using
dt_addatom().

dt_bond(Handle at1, Handle at2) => bond
Returns the handle of the bond joining the two atoms.

dt_xatom(Handle a, Handle b) => atom
Return the atom that is across the bond b from the atom a.

dt_uid(Handle abc) => integer
Returns the unique id of an atom, bond or cycle within the containing molecule. A unique id
is a smallish non-negative integer (i.e. it can be zero) that is guaranteed to not change for as
long as the object abc exists. The intention is that unique id's, unlike handles, be reasonably
dense; for this reason the uid makes a good array index but a handle does not. Note that
unlike handles, uid's are only unique across a single containing object; for example, atoms
from two different molecules may have the same uid.

dt_uidrange(Handle molecule, integer typ) => integer
Returns a number that is at least 1 greater than the largest uid currently associated with any
constituent having type typ contained in the molecule.

7.3 Modifying Molecules

7.3.1 Derived Properties

Many molecule properties are derived properties. Derived properties are not explicitly specified as
you create the molecule; rather, they are computed once the molecule is assembled. For example, you
don't directly add a cycle (a ring) to a molecule; instead you add various bonds between the
molecule's atoms; the Toolkit detects the existence of cycles after a molecule's atoms and bonds are
completely specified. Cycles are thus a derived property. Other derived properties include
aromaticity, chirality and, in some cases, bond type (see also dt_bondtype() and dt_bondorder()).

7.3.2 The Modify-on and Modify-off States

Before a molecule object can be modified it must be put into the modify-on state; when modifications
are complete, the molecule object is returned to the modify-off state. Generally speaking, functions
that modify significant properties of a molecule or its constituents may be applied only in the
modify-on state. These functions are further divided into structural-modification functions (described
below) which change the structure of the molecule, and non- structural-modification functions, which
merely change the properties of the existing structure of the molecule.

These modify-on and modify-off states serve two purposes. First, when modifying a molecule or
building one "from scratch," the molecule may enter temporary configurations in which it does not
represent a valid chemical compound. The modify-on state indicates that the molecule may be in such
a state, and prevents the application from asking questions (such as questions about derived
properties) that the Toolkit may not be able to answer. Second, some of the derived properties take a
significant amount of time to compute (e.g. finding a "smallest set of smallest rings" is a

Daylight Toolkit Programmers' Guide

7.2 Constituents of a Molecule 24

computationally difficult task for which no fast algorithm exists). The transition from modify-on to
modify-off tells the Toolkit to recompute derived properties as necessary.

dt_mod_on(Handle m) => boolean
Puts the given molecule into the modify-on state; molecules in this state may be modified.

dt_mod_off(Handle m) => boolean
Puts the given molecule into the modify-off state. This function causes the molecule's
structure to be analyzed; its properties may be changed as a result. The most notable change is
to the aromaticities of constituents (atoms, bonds, and cycles). A recalculation of contained
cycles may also take place.

If there is an error, the molecule is deallocated just as though dt_dealloc() had been called.
(This is an unfortunate side-effect of the structure-analysis functions: if they fail, they leave
the molecule in an unusable state. Molecules that are "precious" should be copied just prior to
invoking dt_mod_off(); if it returns TRUE the copy can be discarded. The copy-and-discard
operation is "cheap" (i.e. fast) compared to the structural analysis.)

dt_mod_is_on(Handle m) => boolean
Returns TRUE if the molecule is in the modify-on state, FALSE otherwise.

7.3.3 Functions Applicable Only During Modify-On

These functions can only be applied to a molecule or its constituent parts when the molecule is in the
modify-on state. Generally speaking, such functions modify the structure of a molecule in some
significant way.

dt_addatom()
dt_addbond()
dt_dealloc() (when applied to an atom or bond)
dt_setbondorder()
dt_setbondtype()
dt_setcharge()
dt_setchival()
dt_setdbo()
dt_setimp_hcount()
dt_setnumber()
dt_setweight()

7.3.4 Functions Applicable Only During Modify-Off

These functions can only be applied to a molecule or its constituent parts when the molecule is in the
modify-off state. Generally speaking, such functions only make sense when applied to well-formed
molecules.

dt_arbsmiles()
dt_cansmiles()
dt_symclass()
dt_symorder()
dt_xsmiles()

7.3.5 Functions Applicable At All Times

All functions not listed either here or in the previous section that normally apply to molecules can be
applied to a molecule in both the modify-on or the modify-off states.

Daylight Toolkit Programmers' Guide

7.3.2 The Modify-on and Modify-off States 25

7.4 Structural-Modification Functions

The three functions dt_addatom(), dt_addbond(), and dt_dealloc() (when applied to atoms or bonds)
are collectively referred to as structural modification functions. After calling a structural modification
function, future streams returned by dt_stream() are no longer guaranteed to return objects in the same
order that they were returned before the modification. Note that this remains true even if the structure
of the molecule is later restored to an equivalent form.

Also, remember that any structural modification to a molecule causes all streams of atoms, bonds or
cycles over the molecule to be deallocated.

dt_addatom(molecule m, integer atno, integer hcount) => atom
Add an atom with atomic number atno and hcount hydrogens to the given molecule.

dt_addbond(atom a1, atom a2, integer btype) => bond
Add a bond with the given bond type between the two atoms.

dt_dealloc(object ab) => boolean
Atoms and bonds are removed from a molecule by deallocating them.

7.5 Properties of Atoms

Arbitrary SMILES: An Arbitrary SMILES is derived by the same algorithm as a unique SMILES,
except that a user-specified set of labelings is used, allowing the generation of a SMILES in an
arbitrary order. The user-specified labeling of each atom is called the arbitrary order of the atom. The
SMILES begins with the atom whose arbitrary order is lowest; when branch points are reached, the
branch with the atom whose arbitrary order is lowest is written first. The following functions are
related to Arbitrary SMILES:

dt_setarborder(atom at, integer order) => boolean
Sets the atom's arbitrary order value

dt_arborder(atom at) => integer
Returns arbitrary order value for the given atom.

dt_arbsmiles(molecule m, boolean iso) => string
Returns an Arbitrary SMILES string for the given molecule. The iso parameter indicates
whether the returned SMILES string should contain isomeric labelings.

Atomic Charge: Two functions are provided to set and get the charge on an atom:
dt_setcharge(atom at, integer charge) => boolean

Sets the atom's formal charge.
dt_charge(atom at) => integer

Returns the atom's formal charge.
Hydrogen Count: The graphs used to represent molecules are usually hydrogen- suppressed:
hydrogens are represented as a property of the "heavy" atoms to which they are attached rather than as
separate atom objects. Such hydrogens are called implicit hydrogens. In some cases hydrogens must
be actual objects (e.g. when there is isotopic information or more than one bond to the hydrogen); in
other cases it may be convenient to have hydrogen objects (e.g. when data, such as xyz coordinates,
are known about them). Such hydrogens are called explicit hydrogens.

The following functions are used for implicit and explicit hydrogens (also see dt_addatom()):

dt_hcount(atom at) => integer
Returns the total number of hydrogen atoms (implicit and explicit hydrogens) bonded to the
atom.

Daylight Toolkit Programmers' Guide

7.4 Structural-Modification Functions 26

dt_imp_hcount(atom at) => integer
Returns the number of implicit hydrogens bonded to the atom.

dt_setimp_hcount(atom at, integer count) => boolean ok
Sets the number of implicit hydrogens on the atom.

Atomic Number, Symbol, and Weight: An atom's atomic number and weight are independent in the
Daylight Toolkit. In real life, only certain isotopes exist for each atomic number; the Daylight Toolkit
imposes no such constraint.

The atomic symbol is derived directly from the atomic number; the Toolkit doesn't provide a way to
set it independently.

dt_number(atom at) => integer
Returns the atom's atomic number.

dt_setnumber(atom at, integer num) => boolean
Sets the atom's atomic number.

dt_symbol(atom at) => string
Returns the atom's atomic symbol (e.g. "C", "Si").

dt_weight(atom at) => integer
Returns the atom's atomic weight. The returned weight is '0' if the weight is unspecified (eg.
the default weight of an atom). Returns an integer weight for atoms which have been set to a
specific isotope value with dt_setweight().

dt_setweight(atom at, integer weight) => boolean
Sets the atom's atomic weight.

7.6 Properties of Bonds

Bond type and bond order are closely related but not identical properties of a bond object.

Bond order: a formal property of the bond, which can only be one of DX_BTY_SINGLE,
DX_BTY_DOUBLE, DX_BTY_TRIPLE, representing single bonds, double bonds, and triple bonds,
respectively.

Bond type: a derived property, which is normally computed by the Toolkit when the molecule goes
from modify-on to modify-off. The primary situation where the bond type will differ from bond order
is in aromatic structures, in which single and double bonds can be converted to aromatic bonds. Bond
type can be any of DX_BTY_SINGLE, DX_BTY_DOUBLE, DX_BTY_TRIPLE, or
DX_BTY_AROMAT.

When a molecule is in the modify-on state, a bond's type or order can be changed. Normally, one
specifies a bond's type, and lets the Toolkit generate the bond order from that. If you specify a bond's
order via dt_setbondorder(), its type will be changed too. If you specify its type via dt_setbondtype(),
the bond order may not agree until dt_mod_off() is called.

dt_bondtype(Handle bond) => integer
Returns the bond's type. This value can change when a molecule changes from the modify-on
state to the modify-off state (For example, it might change from single or double to aromatic).

dt_setbondtype(Handle bond, integer type) => boolean ok
Sets the bond's type. Also may affect the bond's order; if the bond type is set to single, double,
or triple, the bond order is too; if the bond type is set to aromatic, bond order becomes
unknown.

dt_bondorder(Handle bond) => integer order
Returns the bond's order.

Daylight Toolkit Programmers' Guide

7.5 Properties of Atoms 27

dt_setbondorder(Handle bond, integer order) => boolean ok
Sets the bond's order. Also affects the bond's type, which is also set to the value order.

7.7 Properties of Cycles

There are no specific functions for accessing or modifying cycles in a molecule, as cycles are a
derived property of the bonds. The general function dt_stream() will return the cycles of a molecule,
bond, or atom.

7.8 Generating SMILES

dt_cansmiles(molecule m, boolean iso) => string
Returns a canonical SMILES string for the given molecule. (Note that this causes calculation
of the canonical labelings if it has not yet been done, a potentially time-consuming operation.)
The iso parameter tells whether the SMILES string should contain isomeric labellings
(isotopic and chiral information). (A canonical SMILES string with isomeric labelings is
called an Absolute SMILES. Without isomeric labelings, it is called a Unique SMILES.). The
molecule must be in the modify-off state (see dt_mod_off()).

Note: The string returned is part of the molecule object and may change or be discarded if the
molecule is modified or deallocated. In general, you should copy the string if you will need it
later.

dt_xsmiles(molecule m, boolean iso, boolean explicit) => string
Returns an exchange SMILES string for the given molecule. An exchange SMILES is a
SMILES with Daylight aromaticity conventions eliminated. The iso parameter tells whether
the SMILES string should contain isomeric labellings (isotopic and chiral information). The
explicit parameter tells whether to also explicitly list attached hydrogens for all atoms. The
molecule must be in the modify-off state (see dt_mod_off()).

Note: The string returned is part of the molecule object and may change or be discarded if the
molecule is modified or deallocated. In general, you should copy the string if you will need it
later.

7.9 Aromaticity

These functions test the aromaticity of molecules, atoms, bonds and cycles, and where appropriate,
allow you to set those attributes.

Aromaticity in the Daylight Toolkit is a complex subject. For a more thorough discussion of
aromaticity in the Daylight System, please see SMILES Chapter of the Daylight Theory Manual.

dt_aromatic(object ob) => boolean
Returns TRUE if the given object (an atom, bond, cycle or molecule) is considered aromatic.

dt_setaromatic(atom at, boolean isarom)
Sets the aromaticity of the atom at to TRUE or FALSE according to the value of isarom.

7.10 Symmetry

The Daylight Toolkit can compute the symmetry of a molecule. There are two different symmetry
values you can access.

Symmetry Class: Two atoms in a molecule will be in the same symmetry class if and only if they are
symmetrically equivalent. The actual number assigned to a symmetry class is arbitrarily -- the the

Daylight Toolkit Programmers' Guide

7.6 Properties of Bonds 28

only significance of the numbers is whether two atoms have the same class number or not.

Symmetry Order: The algorithm that generates the symmetry order uses graph invarients (including
the symmetry classes described above) to generate a unique labeling (the symmetry order) of the
molecule's graph. An atom's symmetry order controls the generation of the Unique SMILES (see
dt_cansmiles()).

Note that any change, however slight, to the molecule may cause the symmetry class and/or symmetry
order values to change.

dt_symclass(atom at) => integer
Returns the unique symmetry class of an atom in its parent molecule.

dt_symorder(atom at) => integer
Returns the unique symmetry order of an atom in its parent molecule.

7.11 Chirality

The most complex attributes are chirality attributes, which are specified by single integer codes called
chiral values. These values combine two separate pieces of information, a chiral class (corresponding
to a geometric configuration such as tetrahedral, octahedral, and so on) and a chiral order (a particular
ordering around the chiral center, such as clockwise, counter-clockwise, and so on).

Symbolic constants are defined to simplify the specification of chiral values. In the current
implementation, only cis/trans and tetrahedral chirality are supported. The following symbolic
constants combine the chiral class and chiral order information for convenience:

Cis/Trans Chirality
DX_CHI_NO_DBO cis/trans situation, but chirality is unspecified
DX_CHI_CIS cis configuration around a double bond
DX_CHI_TRANS trans configuration around a double bond

Tetrahedral Chirality
DX_CHI_NONE unspecified chirality
DX_CHI_THCCW tetrahedral center with counterclockwise configuration
DX_CHI_THCW tetrahedral center with clockwise configuration

dt_dbo(bond db, bond b1, bond b2) => integer
Returns the "double-bond orientation" between b1 and b2. The bond db should be a double
bond that is at the center of a cis/trans configuration. Bonds b1 and b2 should single bonds
attached to the atoms at the end of db, one on each of the two atoms. The return value will be
equal to one of the symbolic constants DX_CHI_CIS, DX_CHI_TRANS, or
DX_CHI_NO_DBO. The latter case indicates that the cis/trans configuration around db is
unspecified.

dt_setdbo(bond db, bond b1, bond b2, integer dboval) => boolean
Sets the "double-bind orientation" between b1 and b2 to the given value. The first three
parameters are as described above for dt_dbo(). The last parameter is one of DX_CHI_CIS,
DX_CHI_TRANS, or DX_CHI_NO_DBO.

dt_chival(atom at, sequence seq) => integer
Returns the chiral value around the given chiral center at, determined with respect to the
order of the bonds in this sequence. See the function's full description for details.

dt_chiseq(atom at, integer chival) => sequence

Daylight Toolkit Programmers' Guide

7.10 Symmetry 29

Returns a sequence of bonds having the chirality given by chival around the given atom at
(the chiral center). the chiral order portion of the value is used to determine the ordering of
the returned sequence. See the function's full description for details.

dt_setchival(atom at, sequence seq, integer chival) => boolean
Sets the chiral value at the given chiral center at. The parameter seq is a sequence of bonds
that meets the conditions specified for dt_chival(); the chiral value is set with respect to the
order of bonds in this sequence.

dt_chiperm(sequence seq, bond start, integer chival) => sequence
Given a sequence of bonds having the given chiral value, modify it (i.e., permute it) so that
the chiral value is preserved, but so that it begins with the given bond start.

dt_chiclass(integer chival) => integer
Return an integer code for just the chiral class part of the given chiral value.

dt_chiorder(integer chival) => integer
Returns an integer code for just the chiral order portion of the given chiral value.

dt_isohydro() => atom
Returns a hydrogen-atom object that is useful for representing implicit-hydrogen atoms in
calls to the isomeric functions. Each call to this function returns the same special atom. The
atom may not be modified (attempts will fail) and it has no parent molecule (calls to
dt_parent() will return NULL_OB). In general, applications should not attempt to play around
with it too much; its only intended use is in calls to the isomeric functions defined above.

8. SMILES Toolkits: Substructures and Paths

8.1 Introduction

The Daylight Substructure Toolkit provides objects and functions to represent and operate on
substructures and paths:

Substructure:
A set of atoms and bonds from one molecule. Typically a substructure is obtained as the
result of a substructure search (see the chapter on the SMARTS Toolkit), but they can be
created "from scratch" by an algorithm of your own design using Toolkit functions, described
below.

A substructure is simply a set -- there is no implied order to the atoms or bonds in the set, and
each atom and bond from the molecule occurs at most one time in the substructure. We
normally think of a substructure as a set of atoms and bonds that are connected together in
some chemically meaningful way. A substructure object can be used to represent these
"ordinary" substructures, but it can also be used to represent less conventional collections. For
example, a substructure object could hold all of the double bonds in a structure, all of the
atoms with an odd number of protons, and so forth. In other words, a substructure object is
just an arbitrary set of atoms and bonds; it is up to the programmer using the object to decide
what the set means.

Path:
A path through a substructure. That is, a set of atoms and bonds from a single base molecule,
and a particular ordering of those atoms and bonds.

The word "path" suggests that the ordering in the object be related to the actual connectivity
of the molecule (as though you could "walk" the path without jumping around), but this is not

Daylight Toolkit Programmers' Guide

7.11 Chirality 30

a requirement. The path object is only defined to be an ordered set of atoms and bonds. For
example, a path object could contain all bonds ordered by their bond order (i.e. single, double,
triple, then aromatic), or could contain all atoms ordered by atomic number. Like the
substructure object, it is up to the programmer to assign meaning to the path object's contents.

The SMARTS Toolkit also uses a closely-releated object type, the pathset:

Pathset:
A set of zero or more path objects from a single molecule. The pathset object and its uses are
discussed at length in the SMARTS Toolkit chapter .

NOTE: An often confusing point is that the SMILES Toolkit provides substructure and path objects,
but does not do substructure searching (substructure searching is available in the SMARTS Toolkit --
sold separately). There are many sources of substructures and paths besides SMARTS; the path and
substructure objects provide a convenient way to represent them whether or not you purchase the
SMARTS Toolkit.

To retrieve the contents of a path or substructure, you can create streams of atoms or bonds (see
dt_stream()). Any modificacation to a path or substructure (adding or removing an atom or bond)
causes all streams to be deallocated.

Substructure and Path objects always have a molecule as their base object (see dt_base()). Their
existance dependes on the existance of the base molecule; deallocating a molecule causes all paths
and substructure objects of the molecule to be deallocated.

8.2 Functions on Substructures and Paths

dt_alloc_substruct(Handle mol) => substruct
Returns a new substructure object. The new substructure object initially is empty (contains no
atoms or bonds).

dt_alloc_path(Handle mol) => path
Returns a new path object. The new path object initially is empty (contains no atoms or
bonds).

dt_add(Handle sp, Handle ab) => boolean
Add an atom or bond to the substructure or path. The atom or bond must be from the same
molecule as the substructure's or path's base object

Adding an object to a substructure simply adds it if it is not there; the order in which objects
are added to a substructure is not remembered. Adding an object to a path adds it to the end of
the path unless it is already in the path, in which case the requested addition is ignored.

dt_member(Handle sp, Handle ab) => boolean
Returns TRUE if and only if the given atom or bond is a member of the substructure or path.

dt_remove(Handle sp, Handle ab) => boolean
Remove an atom or bond from a substructure or path.

Removing an atom or bond from a substructure may cause its ordering to change in arbitrary
ways. Removing an atom or bond from a path leaves the order of the remaining objects
unchanged.

Daylight Toolkit Programmers' Guide

8.1 Introduction 31

9. SMARTS Toolkit: Structural Searching

9.1 Introduction

The Daylight SMARTS Toolkit provides a powerful set of substructure searching algorithms. The
SMARTS Toolkit can parse a SMARTS string and produce a pattern object, then test the pattern
against one or more molecule objects to see if the molecule contains the pattern. Several types of
pattern searches are available, including "yes/no" tests and exhaustive enumeration of all occurances
of a pattern in a molecule.

There are three objects specific to the Daylight SMARTS Toolkit:

pattern
The result of "compiling" a SMARTS string. Each SMARTS string is converted to a pattern
before use; the pattern-generation algorithm parses the SMARTS, checks for errors, and
pre-computes certain information that improves substructure-search speed.

pathset
A collection of path objects all of which have the same base molecule. A pathset is the result
of matching a pattern against a molecule. (For background information, see the chapter on
Substructures and Paths.)

vbind
A "vector binding". A binding of a name to a pattern or pathset. This is explained in more
detail below.

9.2 Optimizing SMARTS

dt_smarts_opt(string smarts, boolean vmatch) => string optsmarts
Returns a new SMARTS string that is equivalent in meaning to the given SMARTS, but that
has been reordered to permit matches to be done more quickly on typical molecules. (See the
chapter on SMARTS in the section entitled "Efficiency Considerations" for more
information.)

The optimized SMARTS is called "equivalent in meaning" to the original because the
optimized string will match the exact same sets of objects as the original (though the pathsets
returned may have their atoms and bonds in different orders), no matter what molecules they
are matched against.

The exact meaning of a SMARTS depends upon the type of match to be performed, as
described below in the functions dt_match(), and dt_vmatch(). The parameter vmatch, if
TRUE, indicates that the SMARTS string should be optimized for use by dt_vmatch();
otherwise indicates that it should be optimized for dt_match() or dt_umatch(). (In practical
terms, optimizing for dt_match() or dt_umatch() means that the head atom of the optimized
string may not be the same as that of the original string, whereas optimizing for dt_vmatch()
means that the first atom of the optimized string will be the same as that of the original
string.)

The optimized SMARTS returned by this function are expected to be matched reasonably
quickly on the average. The actual matching speed, however, depends on the molecules to be
matched against, as well as on the SMARTS string itself. It is not possible to guarantee that
the returned string will actually match faster than to original SMARTS. It is often possible to
generate faster SMARTS "by hand" using particular knowledge of the molecules to which it

Daylight Toolkit Programmers' Guide

9. SMARTS Toolkit: Structural Searching 32

will be applied. The algorithm employed by this function is based on rules generated from a
database of "typical" organic molecules.

9.3 Allocating Patterns and Pathsets

dt_smartin(string smarts) => Handle pattern
Interprets the SMARTS string and creates a pattern object; returns the object's handle.

dt_alloc_pathset(Handle molecule) => Handle pathset
Allocates a new pathset object and returns its handle. (Note: this function is typically not
needed; pathsets are normally generated by dt_match(), described below.

9.4 Vector Bindings and Vbind Functions

Vector bindings are a mechanism that allow faster evaluation of a match, and allows complex patterns
to be constructed out of simpler patterns. Those familiar with earlier Daylight software (versions 3.6x
and earlier) will recognize vector bindings as closely related to GCL's "define" functionality.

The term "binding" comes from mathematics. When one thing is bound to another, the latter can be
used to represent the former. For example, in high-school algebra, the expression "x=3" binds the
value three to the symbolic name "x"; thereafter, wherever "x" appears we substitute 3.

9.4.1 Pattern Bindings

The simplest use of vector bindings is when a pattern is bound to a name. Once the pattern and name
are bound, the name can be used in another SMARTS string in place of an atomic symbol. For
example, if we bind the pattern for C[Cl,Br,I] to the name "HALO", the string [$HALO] becomes a
valid atomic symbol; wherever it is used it is equivalent to the atomic expression [$(C[Cl,Br,I])].
(This is an example of a recursive SMARTS.) Binding patterns to names doesn't extend the expressive
power of SMARTS (unnamed vectors such as [$(C[Cl,Br,I])] are valid in any SMARTS), but it tends
to make SMARTS more readable. This is especially true where atomic expressions such as
[$(C[Cl,Br,I])] occur multiple times. For example, a 1,2,4-substituted cyclohexane could be written
two ways; the second is easier to write and easier to understand:

 [$(C[Cl,Br,I])]1[$(C[Cl,Br,I])][CH2][$(C[Cl,Br,I])][CH2][CH2]1

 [$HALO]1[$HALO][CH2][$HALO][CH2][CH2]1

9.4.2 Pathset Bindings

When a pathset is bound to a name, that name represents all the places in the molecule where a search
has already succeeded. If, for example, one has a number of SMARTS to test against a single
molecule, and many of the SMARTS contain an common expression such as [$HALO], the search
speed of each can be improved by pre-computing the pathsets for [$HALO] (i.e. doing dt_vmatch()
on the pattern for C[Cl,Br,I]), then binding the resulting pathset to the name "HALO". When the
[$HALO] atomic expression is encountered in a SMARTS, the vector binding already contains the
pathset with all atoms that match; no additional searching is required for that atomic expression.

Binding pathsets in this fashion can greatly improve the performance of "chemical knowledge"
systems in which a large number of rules are applied to each molecule. By carefully choosing
common subexpressions, matching them to the molecule, and binding the resulting pathsets to names,
a great deal of redundant searching can be eliminated.

Daylight Toolkit Programmers' Guide

9.2 Optimizing SMARTS 33

9.4.3 Functions

dt_alloc_vbind(string name) => Handle vbind
If there is already a vector binding with the specified name, that existing vector binding is
returned. Otherwise, a new vector binding is allocated and given the specified name.

The string name must begin with a letter from the alphabet; subsequent characters in the name
must be alphabetic, a digit, or the underscore '_'. In UNIX parlance, the name must match the
regular expression /^[a-zA-Z][a-zA-Z0-9_]*$/.

If the object bound to a vector-binding is deallocated (see dt_setval(), below), the vector
binding's value is automatically set to NULL_OB. (Note that the vector-binding object is not
deallocated in this case since its binding is not its parent or base object.)

dt_name(Handle vbind) => string name
Returns the vector binding's name.

dt_setval(Handle vbind, Handle pp) => boolean ok
Sets the value of the vector binding to the value of pp, which must be NULL_OB, a pattern,
or a pathset.

dt_getval(Handle vbind) => Handle pp
Return the value of the vector binding vbind. It will be NULL_OB, a pattern, or a pathset.

9.5 Pattern Matching

All of the matching functions require the target to be a valid, consistant object. This means that
molecules and reactions must be in mod-off state before calling any of the following functions.

dt_match(Handle pat, Handle mol, boolean exist) => pathset
Matches the pattern against the molecule; returns a pathset indicating the results of the match,
or NULL_OB if no match is found or an error is detected.

The boolean parameter exist indicates whether an exhaustive search or a first-only search
is to be performed. If exist is FALSE, an exhaustive search takes place; pathset will contain
all places in the molecule where pattern matches. If exist is TRUE, the match stops as soon
as the first match is found; pathset will contain just the first path that an exhaustive search
would have found.

dt_vmatch(Handle pat, Handle mol, boolean exist) => pathset
Matches the pattern pat against the molecule mol as with dt_match(), above, except that each
of the paths in the returned pathset contains just a single atom, the one that matched the
"head" atom of the SMARTS from which pat is derived. Further, no two paths in pathset will
contain the same atom.

dt_umatch(Handle pat, Handle mol, boolean exist) => pathset
A unique set of atoms match. Matches the given pattern against the molecule as with
dt_match(), above, except that each of the paths in the returned pathset is guaranteed to
contain a unique set of atoms (relative to all other paths in the pathset).

Conceptually one can think of this as though dt_match() were performed, then all paths
compared to one another. If two paths contain the same atoms, one of the two (the choice is
arbitrary) is removed from the pathset. Notice that two paths thus compared may not be
equivalent; in particular paths that include cycles may contain the same atoms but not the
same bonds. The resulting pathset is guaranteed to contain (as determined by dt_member())
the exact same number of atoms as a match performed with dt_match(), but it may not
contain the same number of bonds.

Daylight Toolkit Programmers' Guide

9.4.3 Functions 34

The purpose of this function is to eliminate the "uninteresting" redundancy in paths that are
typically returned by exhaustive searches using dt_match(). An exhaustive search, by
definition, will find a path for each symmetry in the pattern. For example, dt_match() will
return 12 paths when the SMARTS c1ccccc1 is applied to the molecule c1ccccc1; once for
each of 6 possible starting atoms, times two for the clockwise and anticlockwise paths. When
dt_umatch() is applied, only one path is returned.

The parameter exist is included for consistency; note, however, that if exist is TRUE,
dt_match() and dt_umatch() are equivalent.

dt_xmatch(Handle pat, Handle mol, integer limit) => pathset
This is a further restriction of the unique set of atoms match used by dt_umatch(3). In this
case, only non-overlapping paths are returned. That is, no two paths in the result set will
contain the same atom. The parameter 'limit' works as follows: if 'limit' is zero, returns all
possible paths (exhaustive search). If 'limit' is a positive integer, returns up to 'limit' answers.
Hence, 'limit' can be used to restrict the number of matches found.

NOTE: the results from dt_xmatch(3) depend on the processing order of the atoms in the
target molecule or reaction. For example, matching the pattern 'CC' against the molecule
'CCCC' will return two pathsets, Matching the same pattern against 'C(CC)C' gives one
pathset. In the first case, Carbons #1 and #2 are matched first, leaving #3 and #4 as the second
match. In the second case, Carbons #2 and #3 are matched first, leaving #1 and #4, which
don't match further.

Logically, dt_xmatch(3) performs an exhaustive match and then picks one of potentially
multiple non-overlapping sets of paths for the answer. Fortunately, although one can think of
dt_xmatch(3) working this way, the actual implementation is much faster.

10. Fingerprint Toolkit

10.1 Introduction

Fingerprints, their uses and the history of their development in the Daylight Toolkit (tm) are described
in detail in the Daylight Theory Manual, chapter on Fingerprints.

The Daylight Fingerprint Toolkit provides a set of tools for rapidly screening very large databases of
chemical structures for substructure searching, and for computing the structural similarity between
molecules.

Those who have seen or used Daylight's Merlin program will immediately recognize that the
Fingerprint Toolkit is part of the foundation of Merlin. However, it should be noted that Merlin has
many more capabilities than just the functionality available via the Fingerprint Toolkit; fingerprinting
is only a base on which a much larger set of capabilities is built.

The Fingerprint Toolkit, unlike other Daylight Toolkits, is not recommended for most programming
projects. It is intended for a few special situations where customers have existing database-searching
capabilities and wish to enhance performance or add similarity metrics. If you are contemplating
building a chemical information system, we strongly recommend that you consider using Merlin and
THOR rather than starting with the Fingerprint Toolkit.

Daylight Toolkit Programmers' Guide

9.5 Pattern Matching 35

10.2 Fingerprint Functions

The Daylight Fingerprint Toolkit uses Fingerprint Objects to represent fingerprints. Fingerprints have
the following properties:

Fingerprint Properties
bitmap the fingerprint itself
number of bits the number of bits in the fingerprint (its length in bits)
orig number of bits the number of bits in the original fingerprint (before folding)
number of bits set the number of 1's in the fingerprint's bitmap
orig num. bits set the number of 1's in the original fingerprint's bitmap (before folding)
version the version of the Daylight Toolkit used to create the fingerprint

10.2.1 Global Settings

In versions prior to 4.42, there were three global toolkit values which controlled fingerprint creation
size and folding. These are no longer needed.

10.2.2 Creating Fingerprints

There are two functions to create fingerprints. You can allocate a "blank" fingerprint, then fill it in
later with data from an external source (see Fingerprint Bit Operations, below), or you can create a
fingerprint directly from a molecule.

dt_fp_allocfp(integer size) => Handle fingerprint
Allocate an empty fingerprint. The fingerprint's size will be the given "size" value. It is an
error to apply any function that returns a property of the fingerprint unless that property has
been explicitly set.

dt_fp_generatefp(Handle ob, integer minstep, integer maxstep,
integer size) => Handle fingerprint

Allocate a fingerprint object of the given size; fill its fields with a fingerprint generated from
the object ob, then set the objects "original size", "original bits set", "size" and "bits set"
properties (see dt_fp_obitcount(), dt_fp_obits(), dt_fp_bitcount() and dt_fp_nbits()).

The object ob can be any object for which dt_stream(ob, TYP_ATOM) and dt_stream(ob,
TYP_BOND) will return a stream of atoms and bonds, respectively. Typically ob is a
molecule object, but one can fingerprint various substructures using path, pathset,
substructure, cycle, atom, or bond objects. For example, one can produce a "ring- system
fingerprint" using a substructure object that contains all of the atoms and bonds in all cycles
of a molecule.

The parameters "minstep" and "maxstep" control the fingerprint generation. "minstep" sets
the minimum-length path to be included in the fingerprint; "maxstep" sets the
maximum-length path included.

dt_fp_partfp(Handle part, Handle ob, integer minstep, integer
maxstep, integer size) => Handle fingerprint

Like dt_fp_generatefp(3), except only sets the fingerprint for paths which include the object
'part', which may be an atom or bond. This function performs the full path enumeration over
'ob', but only sets bits in the resulting fingerprint for paths containing 'part'.

Daylight Toolkit Programmers' Guide

10.2 Fingerprint Functions 36

This function is a supported version of the function previously included in the
contrib/stigmata directory. Note that the results using this function will be slightly different,
because this version correctly includes branch and cycle paths containing the object 'part'. The
contributed version only considered the straight-chain paths containing 'part'.

10.2.3 Properties

dt_fp_nbits(Handle fp) => integer nbits
Return the fingerprint's size (number of bits in the bitmap).

dt_fp_obits(Handle fp) => integer obits
Return the fingerprint's original size (before folding). This is the value of "size" which was
provided when the fingerprint was created (see above).

dt_fp_bitcount(Handle fp) => integer bitcount
Return the number of 1's (bits set) in the fingerprint's bitmap.

dt_fp_obitcount(Handle fp) => integer obitcount
Return the original bitcount (before folding).

dt_fp_setobitcount(Handle fp, integer obc) => boolean ok
Set the original bitcount. This is intended to be used only with fingerprint objects created via
dt_fp_allocfp() and filled manually.

dt_fp_setobits(Handle fp, integer ob) => boolean ok
Set the original number of bits. As with dt_fp_setobitcount(), only for use with fingerprint
objects created via dt_fp_allocfp().

10.2.4 Fingerprint Bit Operations

These operations allow the user to manipulate the individual bit-values of the fingerprint. They are
useful for creation of custom fingerprints (eg. bitscreens, 3-D or spectral fingerprints), combining
multiple fingerprints, or writing specialized comparison functions.

Note that dt_stringvalue() and dt_setstringvalue() can be used to get and set the entire binary value of
a fingerprint. The functions described here are useful for manipulating individual or ranges of bits
within a fingerprint.

dt_fp_bitvalue(Handle fp, integer bitno) => integer value
Returns the current value of a bit in the fingerprint.

dt_fp_setbitvalue(Handle fp, integer bitno, integer value) =>
boolean ok

Sets the current value of a bit in the fingerprint to "value".
dt_fp_range(Handle fp, integer offset, integer nbits, integer
*soffset) => string range

Gets a range of bits from a fingerprint. The range is returned as a string of binary data,
starting "soffset" bits from the beginning of the string. The range of bits requested begins at
"offset", for "nbits" bits, or to the end of the fingerprint.

dt_fp_setrange(Handle fp, integer offset, integer nbits, integer
slen, string string, integer soffset, integer operation) => boolean
ok

Sets the values of a range of bits in the fingerprint. The range of bits set are given by "offset"
for "nbits" bits. The "operation" and the given string, starting "soffset" bits from the
beginning of the string, controls how the bits are set. Legal operations are:

DX_FP_SET sets each bit in the range to the source (string) value.
DX_FP_NOT sets each bit in the range to the inverse of source (string) value.

Daylight Toolkit Programmers' Guide

10.2.2 Creating Fingerprints 37

DX_FP_OR sets each bit in the range to the logical-"or" of the source (string) value and
current bit value.

DX_FP_AND sets each bit in the range to the logical-"and" of the source (string) value and
current bit value.

DX_FP_XOR sets each bit in the range to the logical-"xor" of the source (string) value and
current bit value.

10.2.5 Comparisons

dt_fp_fingertest(Handle patfp, Handle molfp) => boolean sub
Returns TRUE if all of the bits that are set (1) in patfp are also set in molfp; that is, returns
the value of the logical expression

 patfp == (patfp AND molfp).

In other words, return TRUE if the molecule that generated patfp could be a substructure of
the molecule that generated molfp.

Returns FALSE if any set bit in patfp is not also set in molfp, or if the two fingerprints are
not compatible (e.g. different sizes), or if either object is not a fingerprint.

dt_fp_euclid(Handle fp1, Handle fp2) => float dist
Returns the euclidian distance between fp1 and fp2, or -1.0 if an error is detected (i.e. the
fingerprints are not compatible or are not fingerprint objects).

dt_fp_tanimoto(Handle fp1, fp2) => float tan_coeff
Returns the Tanamoto coefficient between fp1 and fp2, or -1.0 if an error is detected (i.e.
the fingerprints are not compatible or are not fingerprint objects).

dt_fp_foldfp(Handle fp, integer minsize, float mindensity) =>
boolean ok

Fold the fingerprint. Returns TRUE if no errors are detected. Note that folding may not
actually occur. Folds zero or more times until the "minsize" or "mindensity" values are
reached.

11. Depict Toolkit

11.1 Introduction

Depiction and conformation objects contain sets of Cartesian coordinates for 2-dimensional and
3-dimensional positions (respectively) of atoms in a molecule.

On the surface, depictions and conformations seem similar: one contains (x,y) pairs, the other (x,y,z)
triplets. However, there are significant differences between the two:

A depiction is a schematic representation of a molecule. It is a visualization tool, but doesn't
contain information about the molecule itself.

◊

A conformation contains measured or computed data about a molecule. Although it can be
used for visualization, it can also be used to compute chemical properties, to uniquely identify
a particular physical state a molecule might exhibit, and so forth. Conformations are even
used as identifiers - see the Daylight Theory Manual for a complete discussion.

◊

In spite of the fundamental difference in the information contained in these two objects, their
representations are similar, so many of the functions that operate one also operate on the other.

Daylight Toolkit Programmers' Guide

10.2.4 Fingerprint Bit Operations 38

There are two key differences in the way the Daylight Toolkit treats conformations and depictions:

A 2D depiction can be filled in directly from a molecule using a built-in algorithm that
generates x,y coordinates for each atom. No such algorithm is available for 3D
conformations. (Such algorithms are available from Daylight as separate programs. They are
far more complex and computationally expensive than 2D depiction).

1.

The many and varied uses of 3D conformations require flexibility and simplicity. The
Daylight Toolkit provides access functions such that applications can perform their own
custom operations on conformations. There are no facilities for displaying 3D conformations
directly, hence no facilities for adding labels, setting graphics attributes, and so forth.
However, functions are provided to rotate a conformation to an arbitrary orientation, and to
transform a 3D conformation to a 2D depiction by projecting it on to the XY plane.

2.

Although the units used for depictions and conformations can be considered arbitrary, the Toolkit
assumes that they are in units of angstroms for the purposes of drawing atom labels in a depiction. If a
depiction is made in which the bonds are longer, labels will be correspondingly smaller, and
vice-versa.

11.2 Depictions

A depiction is a two-dimensional representation of a molecule. As such, it contains (x, y) coordinates
for the the atoms in the molecule, and several attributes that control the graphical appearance of the
depiction.

The Daylight Toolkit does not have any I/O capabilities built in. Instead, it relies on a Drawing
Library consisting of about a dozen functions. Although several versions of the Drawing Library are
available from Daylight, including one for serial graphics terminals and one for the X Window
System, the Drawing Library is not considered part of the Toolkit per se: It is possible to write your
own Drawing Library and attach it to the Toolkit. The specifications required by the Daylight Toolkit
of the Drawing Library are given later in this chapter.

Each graphical attribute of a depiction is represented in the Toolkit by a unique integer value called a
GA (Graphical Attribute). Each GA represents a complete specification of all graphical features such
as color, line width, and line style. It is up to the Drawing Library and the application program to
"agree" on the meaning of each GA; the Daylight Toolkit does not know or care about the meaning of
a GA; the Toolkit associates GAs with objects (atoms, bonds, etc) and passes them along to the
Drawing Library when a depiction is drawn.

The Drawing Library will always accept one special graphics attribute, named DX_GA_UNSPEC. It
represents an unspecified graphics attribute; reasonable defaults are used for objects whose graphics
attributes are unspecified. The following functions are used for depiction objects:

dt_alloc_depiction(molecule molec) => depiction
Creates and returns a depiction for the given molecule. Note that there is no theoretical limit
to the number of pictorial representations that may be created for the same molecule, though
an implementation may impose a practical limit. The initial properties of the depiction are as
follows: All initial (x, y) coordinate values are 0; the isomeric, compressed, and schematic
attributes are all initially FALSE.

Each depiction object has a base object: the molecule it represents (see dt_base()). If the base
molecule is modified (i.e. if dt_mod_on() is invoked), the depiction will automatically be
deallocated and its handle revoked.

Daylight Toolkit Programmers' Guide

11.1 Introduction 39

dt_depict(depiction pic) => boolean
Draws a two-dimensional rendition of the underlying molecule using calls to the Drawing
Library. The drawing uses the current coordinates and attributes of the given depiction.

dt_calcxy(depiction pic) => boolean
Sets the coordinates for the atoms of the given depiction (i.e. generates a 2D schematic
representation), using an internal algorithm. Note that the coordinates are set according to the
current attributes of the depiction (i.e. whether it is to be drawn in isomeric, compressed or
schematic form) and the current attributes of the underlying molecule. If any of these
attributes are changed, the coordinates may become outdated. It is the user's responsibility to
recalculate them in this case.

dt_setbondstyles(depiction pic) => boolean
Sets the chiral bond styles of a depiction whose molecule contains chiral information. That is,
attempts to determine a reasonable set of "in" and "out" wedges, cis and trans markings, and
so forth, to accurately represent the chiral information present in the molecule. Note that this
function must be applied after dt_calcxy() has been called or some other method of setting
coordinates has been applied, as the bond styles depend on the particular layout of the
depiction.

dt_bondstyle(dt_Handle deph, dt_Handle ah, dt_Handle bh) => integer
Returns the style of bond in depiction, relative to an atom. The values that are returned are
symbolic constants defined in the Depict Toolkit's header file.

dt_ga(depiction pic, object ob) => integer
Returns the graphics attribute associated with object ob in the given depiction. If ob is an
atom, the attribute is the one used when drawing the atomic symbol. If ob is a bond, the
attribute is the one used when drawing the bond. If ob is an aromatic cycle, the attribute is the
one used when drawing the circle indicating its aromaticity.

dt_setga(depiction pic, object ob, integer ga) => boolean
Set the graphical attribute associated with the given object in the given depiction.

dt_label1(depiction pic, object ob) => string
dt_label2(depiction pic, object ob) => string

Return the first and second string labels associated with the given object in the given
depiction. If an error is detected returns the invalid string. String labels may be associated
with any constituent of the underlying molecule, including the entire molecule itself.
Depending on the type of the constituent, the label will be used in different ways. The first
atom label is drawn to the lower left of the atomic symbol. The two bond labels are drawn
above and below the bond. Cycle labels are unused. Labels for the whole molecule are placed
above and below the depiction as a whole.

dt_setlabel1(depiction pic, object ob, string label) => boolean
dt_setlabel2(depiction pic, object ob, string label) => boolean

Set the first and second string labels associated with the given object in the given depiction.
Returns TRUE if no errors are detected.

dt_label1ga(depiction pic, object ob) => integer
dt_label2ga(depiction pic, object ob) => integer

Returns the graphic attribute of the first and second string labels of the given object in the
given depiction.

dt_setlabel1ga(depiction pic, object ob, integer ga) => boolean
dt_setlabel2ga(depiction pic, object ob, integer ga) => boolean

Sets the graphical attributes of the first and second string labels of the given object in the
given depiction. Returns TRUE if no errors are detected.

dt_isomeric(depiction pic) => boolean
Returns TRUE if the depiction includes isomeric information.

dt_setisomeric(depiction pic, boolean iso) => boolean

Daylight Toolkit Programmers' Guide

11.2 Depictions 40

Sets the isomeric depiction status of the given depiction to the given value. (A value of TRUE
means that isomeric information will be drawn.) Returns TRUE if no errors are detected.

dt_compressed(depiction pic) => boolean
Returns TRUE if chains of like atoms are compressed in the depiction.

dt_setcompressed(depiction pic, boolean comp) => boolean
Sets the compressed depiction status of the given depiction to the given value. (A value of
TRUE means that chains of like atoms are compressed.)

dt_schematic(depiction pic) => boolean
Returns TRUE if the depiction is simplified to the point of a schema. (All normal carbons are
suppressed, no circles in aromatic rings, etc.)

dt_setschematic(depiction pic, boolean schema) => boolean
Sets the schematic depiction status of the given depiction to the given value. (A value of
TRUE means that the depiction is simplified to a schema.) Return TRUE if no errors are
detected.

dt_orient(depiction pic) => integer
Returns the orient property of the depiction.

dt_setorient(depiction pic, integer value) => boolean
Sets the orient property of the depiction. The value controls the allowed orientations of the
depiction.

11.3 Conformations

A conformation is an association of 3D Cartesian coordinates with the atoms of a molecule; there is
an (x, y, z) coordinate for each atom. It is a "lower level" object than a 2D depiction: A 2D depiction
is assumed to be useful only in that it can be shown to the user, whereas a 3D conformation might be
the basis for chemical modeling, computing charge density, energy calculations, and so forth.

Unlike a depiction, there are no mechanisms for drawing conformations (e.g. no labels, graphics
attributes, etc.), but a 3D conformation can be projected on to a 2D depiction.

dt_alloc_conformation(molecule molec) => conformation
Returns a conformation for the given molecule. All (x,y,z) coordinates in the conformation
are set to 0. Note that there is no theoretical limit to the number of conformations that may be
created for the same molecule, though there may be practical limits.

Each conformation object has a base object: the molecule it represents (see dt_base()). If the
base molecule is deallocated the conformation will automatically be deallocated and its
handle revoked. Note that, unlike depiction objects, conformation objects are not deallocated
when the molecule is modified.

dt_project(depiction pic, conformation conf) => boolean
Sets the coordinates for the atoms of the given depiction by projecting the given
conformation's atom coordinates to the x/y plane (i.e. ignore the z axis).

11.4 Modifying Depictions and Conformations

The following functions apply to both depictions and conformations.

dt_setcoord(object ob, atom at, real x, real y, real z) => boolean
Sets the (x,y) or (x,y,z) coordinates of the atom in the depiction or conformation, respectively.
If ob is a depiction, z is ignored but must be present.

dt_zerocoord(object ob) => boolean

Daylight Toolkit Programmers' Guide

11.3 Conformations 41

Zeros the (x,y) or (x,y,z) cartesian coordinates of the atom in the depiction or conformation,
respectively.

dt_getcoord(object ob, atom at, RETURN real x, RETURN real y, RETURN
real z) => boolean

Gets the (x,y) or (x,y,z) cartesian coordinates of the atom in the depiction or conformation,
respectively. If ob is a depiction, z is not altered but must be present. Note that x, y, and z are
return values (e.g. are modified by the function).

dt_rotate(object ob, real x, real y, real z, real theta) => boolean
If ob is a conformation, modifies the 3D coordinates associated with the atoms in the
conformation ob, by rotating them by angle theta around an axis defined by x, y, and z.

The axis of rotation is the line from the origin to the point (x,y,z). Note that its length is
irrelevant, only its direction is of interest; you can think of (x,y,z) as a vector. For this reason,
at least one of x, y, and z must be nonzero. The angle of rotation is given by theta and is
expressed in radians. The sense of the angle is given by the "right hand rule": if you curl the
fingers of your right hand and extend your thumb outward as though hitchhiking, your fingers
curl in the direction of positive theta when your thumb is pointing in the vector's direction.

If ob is a depiction this function modifies the 2D coordinates associated with the atoms in the
depiction by rotating them through angle theta about the origin. Since points are rotated about
the origin, the values x, y, and z are ignored. The angle of rotation given by theta, expressed
in radians, is positive in the counterclockwise direction.

Returns TRUE if no errors are detected.
dt_translate(object ob, real dx, real dy, real dz) => boolean

Modifies the (x,y) or (x,y,z) coordinates associated with the atoms in the depiction or
conformation, respectively, by adding dx, dy, and dz to the x, y, and z coordinates of each
atom. If ob is a depiction, the parameter dz must be present but is ignored.

dt_scale(object ob, real cx, real cy, real cz) => boolean
Modify the (x,y) or (x,y,z) coordinates of a depiction or conformation, respectively,
associated with the atoms in ob by multiplying their values by the given factors. If ob is a
depiction, cz is ignored but must be present.

11.5 The Drawing Library

The Drawing Library provides all I/O for Daylight Toolkit depictions. All actual drawing (e.g. the
results of calling the function dt_depict()) is done through calls to the Drawing Library. The Drawing
Library is not an intrinsic part of the Daylight Toolkit, but rather is a replaceable module: Different
versions can be attached to allow the Daylight Toolkit to work in a variety of environments, such as
the X Window System, serial terminals, PostScript devices, and so forth.

Several example drawing libraries are supplied with the Daylight Depict Toolkit; they can be found in
$DY_ROOT/contrib/src/depict. If you are writing a new Drawing Library, we suggest you
begin with these functioning examples.

12. Reaction Toolkit

Daylight Toolkit Programmers' Guide

11.4 Modifying Depictions and Conformations 42

12.1 Introduction:

The reaction toolkit provides a set of tools which support both specific and generic single-step
reactions. These tools add the capability to address numerous reaction-oriented chemical information
problems. These tools are integrated into the Daylight system and are used extensively within Thor
and Merlin to add support for reactions to these systems.

The reaction toolkit adds support for two additional object types:

Reaction Toolkit Object
Classes

Reaction a single-step reaction
Transform a generic reaction

The reaction object is actually implemented within the Smiles toolkit library. The transform object is
implemented within the Smarts toolkit library. Note that the reaction toolkit is licensed separately,
even though the toolkits are contained within the Smiles and Smarts libraries.

12.2 Polymorphism and the Reaction Toolkit:

The extensive use of polymorphism for both reaction and transform objects is one of the key
principals which makes the reaction toolkit convenient to use. A design criteria for a reaction object is
that it behave as much like a molecule object as possible. Similarly, a design criteria for the transform
object is that it behave like a pattern object.

In effect, a reaction object is a "superset" of a molecule object. A reaction can do everything a
molecule can, and then some (which we'll cover in detail).

For example, a reaction contains one or more molecule objects. These are the components of the
reaction (reactant, agent and product molecule). Each of these molecule objects in turn contains
atoms, bonds, and cycles. Now one can certainly take a stream of molecules over a reaction. This
works as one would expect, returning a stream which contains every component molecule in the
reaction.

dt_stream(reaction, TYP_MOLECULE) => all molecules in the reaction

One can also take streams of atoms, bonds, or cycles over a reaction, effectively ignoring the
molecule layer of the reaction. In this case, the streams work exactly the same for molecules and
reactions.

dt_stream(reaction, TYP_ATOM) => all atoms in the reaction
dt_stream(reaction, TYP_BOND) => all bonds in the reaction
dt_stream(reaction, TYP_CYCLE) => all cycles in the reaction

Note that in the case of streams of atoms or bonds over a reaction, the resulting stream will contain
ALL of the atoms, bonds or cycles in every molecule in the reaction.

Generally, the strategy for reaction toolkit programming is to ignore the "molecule layer" of a reaction
whenever possible. This results in toolkit code which is most flexible in that the code will correctly
process both molecules and reactions.

Daylight Toolkit Programmers' Guide

12.1 Introduction: 43

As an example, consider the following code:

#include "dt_smiles.h"
#include "dt_depict.h"

main() {
 dt_Handle ob, d, atoms, atom;
 char line[400], *msg;
 int len, count;

 /*** Get SMILES from user ***/

 if (!gets(line)) return (0);

 /*** Create object. dt_smilin returns a molecule or reaction, but we
 don't care which. The rest of the toolkit calls operate equally
 well on either. ***/

 ob = dt_smilin(strlen(line), line);

 /*** We could check the type of object returned if we wanted, but it isn't
 necessary (dt_type(ob) would return TYP_MOLECULE or TYP_REACTION) ***/

 count = 0;
 atoms = dt_stream(ob, TYP_ATOM);
 while (NULL_OB != (atom = dt_next(atoms)))
 if (dt_number(atom) == 6) count++; /*** Count carbons ***/
 dt_dealloc(atoms);

 printf("The object contains %d carbon atoms.\n", count);

 /*** Note that dt_alloc_depiction(3) can take a reaction or molecule object
 in version 4.5 ***/

 d = dt_alloc_depiction(ob);
 dt_calcxy(d);

 /*** Call drawing library to show depiction ***/

 dl_beginscreen();
 dt_depict(d);
 dl_endscreen(d);

 /*** Destroy objects. ***/

 dt_dealloc(d);
 dt_dealloc(ob);
 return(1);
}

Whether the user enters a reaction or molecule SMILES is completely irrelevant to the program, the
way it is coded, or its execution. This example program and many others like it (cansmi, showparts,
protons, hbonds, smarts_filter, addfp, etc.) only need be recompiled under version 4.51 or later to be
fully reaction-capable.

The other important factor which makes the reaction toolkit convenient is the treatment of derivative
objects (paths, substruct, pathsets, depictions, conformations, fingerprints). Each of the derivative
object types has been extended to handle Reaction objects directly. There is no need to use or
understand the behavior of a bunch of new derivative objects specifically for reactions.

Daylight Toolkit Programmers' Guide

12.2 Polymorphism and the Reaction Toolkit: 44

In the case of derivative objects, the molecule layer of a reaction is ignored; the derivative objects just
work at the atom and bond layer. For example, the depiction object used in the example code above
handles reactions just as well as molecules. One can create a depiction for either a molecule or a
reaction object. The returned depiction objects behave exactly as in version 4.42 with one exception:
the base object (dt_base(3)) of a depiction may now be either a reaction or molecule; in version 4.4
the base of a depiction was always a molecule. See section 12.7 for further discussion of derivative
objects and reactions.

12.3 Processing reactions:

A reaction consists of a set of molecule objects, each has a specific role in the reaction: reactant,
product, or agent. Agents are molecules which do not contribute atoms to the products, or accept
atoms from the reactants. Note that this definition is not enforced by the toolkit. It is manifested in the
definition of atom maps for reactions.

This section focuses on tookit functions which are specific to reaction objects or functions which have
new, unique behaviors for reaction objects. These functions are generally useful for building reactions
from scratch and for manipulating reaction objects.

dt_alloc_reaction(void) => Handle reaction
Allocates a new, empty reaction object. This reaction will have no child molecule
components.

dt_addcomponent(Handle reaction, Handle mol, integer role) => Handle
mol

Adds a molecule object to a reaction. The role (DX_ROLE_REACTANT,
DX_ROLE_AGENT, DX_ROLE_PRODUCT) indicates the role which the molecule will
take in the reaction. A copy of the molecule is added to the reaction. The original molecule is
unchanged. The reaction must be in modify-on state. Returns the molecule object within the
reaction to which the given molecule was added.

Practically speaking, a reaction object will have at most one each of reactant, agent, and
product molecules and these are generally processed (eg. streams of molecules over a
reaction) in reactant-agent-product order. If one adds multiple molecule objects to a reaction
with the same role, these are combined within the reaction object. The way to think about this
is that molecules are used as the internal representation of structural data in a reaction, yet the
reaction object reserves the right to change it's internal representation as necessary. Since the
original molecules are unaffected, this works out well.

dt_getrole(Handle ob, Handle reaction) => integer role
Returns the role which the object plays within a reaction. 'ob' can be an atom, bond, cycle, or
molecule. Returns (-1) if 'ob' is not part of the given reaction. The role returned will be one of
the contstants: DX_ROLE_REACTANT, DX_ROLE_AGENT, or DX_ROLE_PRODUCT.
It is not possible to change the role of an object within a reaction. The role is set during
creation of the reaction (via dt_smilin(3) or dt_addcomponent(3)) and is immutable.

There are quite a few functions which take on new capabilities when processing reactions:

dt_smilin(string smiles) => Handle object
When given a reaction SMILES string, interprets the SMILES and returns a newly-allocated
reaction object. Note that dt_smilin(3) returns the appropriate object (either molecule or
reaction) for the given SMILES string. This behavior also depends on the licenses available:

Daylight Toolkit Programmers' Guide

12.3 Processing reactions: 45

Input SMILES Toolkit licenses available dt_smilin(3) behavior
Any SMILES none Program exits
Molecule SMILES smiles returns Molecule object
Molecule SMILES smiles, reaction returns Molecule object
Reaction SMILES smiles returns NULL_OB, warning in error queue
Reaction SMILES smiles, reaction returns Reaction object

dt_cansmiles(Handle reaction, integer iso) => string smiles
Returns the canonical SMILES for a reaction. When 'iso' is FALSE, returns the unique
SMILES. The unique SMILES is the canonical SMILES where all agents, isomeric and
isotopic information, and atom maps are ignored for generation of the SMILES.

When 'iso' is TRUE, returns the absolute SMILES for the reaction. This includes all agents,
isotopic and isomeric information, and atom maps.

dt_xsmiles(Handle reaction, integer iso, integer explicit) => string
smiles

Returns an exchange SMILES for a reaction. When 'iso' is FALSE, returns an exchange
SMILES without map, stereo or isotopic information.

When 'iso' is TRUE, returns an absolute exchange SMILES for the reaction. This includes all
agents, isotopic and isomeric information, and atom maps.

The 'explicit' parameter, when TRUE, returns an exchange SMILES with all atomic
properties explicit in the string.

dt_type(Handle reaction) => integer TYP_REACTION
For a reaction object, returns the constant TYP_REACTION.

dt_typename(Handle reaction) => string "reaction"
For a reaction object, returns the string constant "reaction".

dt_info(Handle reaction, string "smiles") => string input SMILES
Returns the input SMILES string used to create the reaction object.

dt_mod_is_on(Handle reaction) => boolean state
Returns the modify-state for the given reaction.

dt_mod_on(Handle reaction) => boolean ok
Puts a reaction object and all of its component molecules in modify-on state. A reaction must
be in modify-on state to add components, or modify any of the component molecules. Note
that one can indirectly put a reaction in modify-on state by calling dt_mod_on(3) for one if its
component molecules.

dt_mod_off(Handle reaction) => boolean ok
Puts a reaction object and all of its component molecules in modify-off state. Causes every
molecule to be checked for structural validiity. This function fails if any of the component
molecules is invalid. If the function fails, the entire reaction is deallocated.

dt_dealloc(Handle reaction) => boolean ok
Deallocates a reaction and all of its component molecules, atoms, bonds and cycles.

The following code gives a simple example of creation and manipulation of a reaction object. In this
example, a reaction is built two different ways: first, a reaction is created from scratch, and molecule
objects are added to build up the reaction. Second, a reaction is built from a single reaction-SMILES.
The resulting reactions have the same unique SMILES.

void build_reaction(void)
{
 dt_Handle reaction1, reaction2;

Daylight Toolkit Programmers' Guide

12.3 Processing reactions: 46

 dt_Handle mol1, mol2, mol3;
 dt_String smi1 = "CCO";
 dt_String smi2 = "CC(=O)O";
 dt_String smi3 = "CCOC(CC)=O";
 dt_String smi4 = "CCO.CC(=O)O>OCC>CCOC(=O)CC";
 dt_String cansmi1, cansmi2;
 dt_Integer slen1, slen2;

 /*** Make molecule objects. We'll build the reaction from its pieces ***/

 mol1 = dt_smilin(strlen(smi1), smi1);
 mol2 = dt_smilin(strlen(smi2), smi2);
 mol3 = dt_smilin(strlen(smi3), smi3);

 /*** Make an empty reaction. Set it to mod on. Add the pieces. ***/

 reaction1 = dt_alloc_reaction();
 dt_mod_on(reaction1);

/*** Note: ethanol added twice, as reactant and agent. This is legal. ***/

 dt_addcomponent(reaction1, mol1, DX_ROLE_REACTANT);
 dt_addcomponent(reaction1, mol1, DX_ROLE_AGENT);

 dt_addcomponent(reaction1, mol2, DX_ROLE_REACTANT);
 dt_addcomponent(reaction1, mol3, DX_ROLE_PRODUCT);
 dt_mod_off(reaction1);

 /*** The molecules are no longer needed (copies are kept by the reaction).
 We can deallocate them. ***/

 dt_dealloc(mol1);
 dt_dealloc(mol2);
 dt_dealloc(mol3);

 /*** Get the unique SMILES for the reaction. ***/

 cansmi1 = dt_cansmiles(&slen1, reaction1, FALSE);
 if (cansmi1 == NULL) return;

 /*** Make a second reaction from a SMILES. ***/

 reaction2 = dt_smilin(strlen(smi4), smi4);
 cansmi2 = dt_cansmiles(&slen2, reaction2, FALSE);
 if (cansmi2 == NULL) return;

 /*** The two unique SMILES shold be the same. ***/

 if ((slen1 == slen2) && (0 == strncmp(cansmi1, cansmi2, slen1)))
 fprintf(stderr, "The two SMILES are the same. Life is good.\n");
 else
 fprintf(stderr, "The two SMILES are different. Life is bad.\n");

 dt_dealloc(reaction1);
 dt_dealloc(reaction2);
 return;
}

Daylight Toolkit Programmers' Guide

12.3 Processing reactions: 47

12.4 Reaction Molecules:

Reactions are made up of molecule objects. These are normal molecules, with a new property, role,
which is used to distinguish the reactant, product and agent in a reaction. Molecules within reactions
have the reaction as a parent, and have a value defined for their role property, but are otherwise
indistinguishable from any other molecules in the toolkit.

dt_parent(Handle molecule) => Handle parent
Prior to version 4.5, a molecule never had a parent object. In version 4.5 and later, if a
molecule is part of a reaction object, it's parent will be that reaction, otherwise this function
will return (NULL_OB).

dt_dealloc(Handle molecule) => boolean ok
Removes the molecule from its parent reaction, and deallocates it.

dt_mod_on(Handle reaction) => boolean ok
For a molecule which is part of a reaction, puts both the molecule itself and its parent reaction
in modify-on state.

dt_mod_off(Handle reaction) => boolean ok
For a molecule which is part of a reaction, puts both the molecule itself and its parent reaction
in modify-on state.

This is identical to callind dt_mod_off(3) for the parent reaction. In effect, the toolkit treats a
reaction and its component molecules as a single unit for structural modification; setting the
state for either the reaction or one of its child molecules sets the state for all of them.

In general, if one is modifying molecules which are part of a reaction, it is best to perform
dt_mod_on() and dt_mod_off() on the reaction object itself, rather than the component molecule(s).
One can easily get confused if one attempts to set mod-on and mod-off for the component molecules
in a reaction.

12.5 Atom Maps:

Within the SMILES language for reactions, atom maps are numeric atom labels. All atoms within a
SMILES string with the same atom map label are associated in an atom map set.

Within the toolkit, atom maps are manipulable only as atom map sets. The toolkit takes care of
interpreting the labels on input SMILES and labeling the output SMILES in a systematic way.

Agent atoms and atoms which are not part of a reaction may never be put in an atom map class. Only
reactant and product atoms from the same reaction may appear in a given atom map class.

There are no requirements for completeness or uniqueness of the atom mappings over a reaction.
Atom mappings are independent of the connectivity and properties of the underlying molecules. The
rules for an atom maps are as follows:

Only reactant and product atoms may belong to atom map classes. Atoms which are not part
of a reaction cannot belong in atom map classes.

◊

An atom may be unmapped or may only belong to one atom map class at a time.◊
Atom map classes must contain at least least one reactant and one product atom from the
reaction.

◊

If either the last reactant or last product atom is removed from an atom map class, the atom
map class is removed.

◊

Daylight Toolkit Programmers' Guide

12.4 Reaction Molecules: 48

dt_setmap(Handle atom1, Handle atom2) => boolean ok
Sets the two atoms to be in the same atom map class. 'atom1' and 'atom2' must be atoms from
the reactant and product of the same reaction, in either order.

If either 'atom1' or 'atom2' already belongs to a map class, the result of this operation is to
merge the sets of atoms into a single map class which contains 'atom1', 'atom2', and any
atoms which were previously mapped to 'atom1' or 'atom2'. For example, the following four
functions, applied in any order, result in a single map class which contains atoms: r1, r2, r3,
p1, p2.

 dt_setmap(r1, p1);
 dt_setmap(r2, p1);
 dt_setmap(r3, p1);
 dt_setmap(r1, p2);

If 'atom2' is NULL_OB, 'atom1' is unmapped from its current map set. That is, 'atom1' will no
longer be mapped to any other atoms in the reaction. The atom map set from which 'atom1' is
removed remains intact unless the atom map set becomes invalid. A map class becomes
invalid if it no longer contains at least one reactant and one product atom. If the atom map set
becomes invalid, all of the remaining atoms are unmapped from one-another.

dt_getmap(Handle atom) => Handle substruct
Returns a substruct based on the reaction containing all of the atoms in the atom map set to
which 'atom' belongs or NULL_OB if atom is unmapped or is not an atom in a reaction.

dt_mapped(Handle atom1, Handle atom2) => boolean mapped
Tests the two atoms. If the two atoms are in the same map class, returns TRUE. Otherwise,
returns FALSE. This is a convenience function. It is somewhat more efficient than
performing the same operation by getting the substruct for one atom and testing the other
against the substruct.

12.6 Hydrogens in Reactions:

Hydrogens in reactions are handled as with molecules (suppressed unless the hydrogen is special).
With reactions, there is an additional case which will make a hydrogen special. It is often desireable
(eg. 1,5-hydride shift) to store information about the location of hydrogens as part of the atom map of
a reaction. Hydrogens with a supplied atom map are considered "special" and these hydrogens are not
suppressed in the toolkit. These mapped hydrogens appear explicitly in Isomeric SMILES for
reactions. Otherwise, atom-mapped hydrogens do not appear in canonical SMILES.

Note that the special hydrogen dt_isohydro(3) can not be part of any atom map class. Hence, this
special hydrogen can never be used in place of an atom-mapped hydrogen in a reaction. Any
atom-mapped hydrogens must be stored as explicit hydrogens.

12.7 Reaction Queries:

A reaction query is expressed with the SMARTS language. SMARTS has been extended with
reaction and atom map query syntax. There is no separate pattern object for a reaction query. When a
SMARTS is interpreted, a pattern object is returned. In effect, the pattern object takes on the
additional expressive capabilities for reactions.

dt_smartin(string SMARTS) => Handle pattern

Daylight Toolkit Programmers' Guide

12.5 Atom Maps: 49

Evaluates the given SMARTS string and creates a pattern object from it. The SMARTS may
be any valid molecule- or reaction-SMARTS.

dt_smarts_opt(string SMARTS, integer vmatch) => string SMARTS
Returns an optimized SMARTS string. Works correctly for both molecule- or
reaction-SMARTS. If "vmatch" is TRUE and the given SMARTS string is for a reaction
query, dt_smarts_opt fails. Vector matching on reaction queries is not allowed.

12.8 Reactions and other objects:

The flexibility and utility of the Daylight toolkit arises partly because of the ability to create
derivative objects based on Molecules. These objects include paths, substructs, pathsets, depictions,
conformations and fingerprints. Each of these objects has a specific unique purpose within the toolkit,
however they all share some common features which are important for reaction processing:

They all have a molecule as their base object,◊
they all store data about the atoms and bonds in a molecule,◊
and they all ignore other attributes of the molecule not directly related to the atoms and bonds
in the molecule.

◊

These features allowed us to directly extend these objects to handle reactions. As discussed in Section
12.3, the "molecule layer" of a reaction is ignored; only the atoms and bonds of a reaction are
considered.

Hence, each of these objects is now defined as having either a molecule or a reaction as its "base"
object. Otherwise, their behaviors are essentially unchanged. They still store data about the atoms and
bonds in their base object, and they still ignore other non-relevant attributes of their base object (like
the molecules).

Briefly, we address each of the main derivative types in the next sections and highlight their behaviors
with regard to reactions.

12.8.1 Paths and Substructs:

Paths and substructs are collections of atoms and bonds, which all come from the same base object.
With reactions, this behavior remains unchanged. The atoms and bonds within a path or substructure
must come from the same reaction but they may be from different molecules within a reaction. For
example, the following code creates a path from a reaction object, adds all of the double-bonds from
the reaction to the path, and returns the path.

dt_Handle get_db(dt_Handle ob)
{
 dt_Handle bonds, bond, path;

 /*** Inappropriate type ***/

 if ((dt_type(ob) != TYP_MOLECULE) &&
 (dt_type(ob) != TYP_REACTION)) return (NULL_OB);

 /*** Make a path. The base of the path will be "ob" ***/

 path = dt_alloc_path(ob);

 /*** If a reaction, ignore the molecule layer. Only deal with the
 bonds. If a molecule, this happens by default. ***/

Daylight Toolkit Programmers' Guide

12.7 Reaction Queries: 50

 bonds = dt_stream(ob, TYP_BOND);
 while (NULL_OB != (bond = dt_next(bonds)))
 if (dt_bondorder(bond) == DX_BTY_DOUBLE)
 dt_add(path, bond);

 /*** Clean up and return ***/

 dt_dealloc(bonds);
 return (path);
}

Note that absolutely no consideration is given to the fact that the bonds may be in different molecules
within the reaction. As long as the atoms and bonds added to a path or substruct are all part of the
correct base object (the object given in dt_alloc_path(3)) this succeeds.

12.8.2 Pathsets:

A pathset is a collection of paths over the same base object. The base object may be a reaction. A
pathset is returned from the SMARTS matching functions.

In this case, the pathset returned depends on the type of target used for the match function:

dt_match(Handle pattern, Handle target, integer limit) => Handle
pathset
dt_umatch(Handle pattern, Handle target, integer limit) => Handle
pathset

This returns a pathset with "target" as its base object. "Target" may be either a reaction or
molecule. The pathset will contain one or more paths. The base object (dt_base(3)) of the
pathset and all paths withing the patheset will be the target object. target object. Note that this
behavior holds regardless of the type of pattern used in the query (reaction or molecule
query).

The semantics for pattern matching are as follows:

Pattern Target Result
Molecule query Molecule object Molecule substructure matches
Molecule query Reaction object All substructure matches over entire reaction
Reaction query Molecule object No hits
Reaction query Reaction object Reaction substructure matches

dt_vmatch(Handle pattern, Handle target, integer limit) => Handle
pathset

This returns a pathset with "target" as its base object. "Target" may be either a reaction or
molecule. The pathset will contain one or more paths whose base object will be the same
target object.

There is one important exception for vector-matching: It is only legal to use a molecule
pattern for dt_vmatch(3). One may match the molecule pattern against either a reaction or
molecule target, but it is not possible to use a reaction pattern for vector matching on any
target (reaction or molecule).

Daylight Toolkit Programmers' Guide

12.8.1 Paths and Substructs: 51

12.8.3 Depictions:

The main distinction between a reaction depiction and a molecule depiction is the presence of a
reaction arrow, and the potential desire to lay out the various reaction parts (reactant, agent, product)
in different regions. These two functions are handled with dt_depict(3), and dt_calcxy(3); all other
depiction-related functions remain unchanged.

dt_calcxy(Handle depiction) => boolean ok
Sets the coordinates for the atoms of the given depiction. In the case of a reaction depiction, it
lays out the reactants, agents and products in a left-to-right orientation, with the reactants and
products centered vertically and the agents shifted above the center.

If atom map classes are available for the atoms in the depiction, the toolkit will attempt to
orient the reactant and product sides of the depictions the same way. The toolkit attempts to
minimize the RMS distance between mapped atom pairs by reorienting the product part of the
reaction depiction before laying out the parts of the reaction. This orientation first applies to
ring atoms within the depiction. If no mapped ring atoms are found, non-ring atoms are used.

dt_depict(Handle depiction) => boolean ok
Generates the depiction, using the Daylight drawing library. For a reaction object,
automatically includes a scaled arrow in the drawing. The toolkit provides no access to the
arrow itself, it is drawn by the toolkit using the framega set for the depiction object.

The arrow is positioned as follows: a horizontal vector is laid out between the midpoints of
the reactant and product parts of the depiction. The vector is clipped so that it doesn't overlap
any parts of the reaction. Finally, the clipped vector with an arrowhead is drawn. If it is not
possible to clip the vector so it doesn't overlay any part of the reaction, the toolkit will then
draw a short arrow between the midpoints of the reactants and products, ignoring any overlap.

12.8.4 Conformations:

The conformation object allows the storage of (x, y, z) coordinate data for the atoms in a molecule
and reaction. A conformation object makes no distinction between the roles of atoms in the reaction
object. With the exception of allowing a conformation to be created from a reaction, all
conformation-oriented functions remain unchanged.

Daylight Toolkit Programmers' Guide

12.8.3 Depictions: 52

12.8.5 Fingerprints:

The fingerprint object does behave differently for a reaction object versus a molecule object. The
differences are seen when creating a fingerprint object, all other fingerprint toolkit functions remain
unchanged. In addition, there is a new fingerprint-creation function, dt_fp_differencefp(3), which is
designed primarily for reaction processing.

dt_fp_generatefp(Handle object, integer minstep, integer maxstep,
integer size) => Handle fingerprint

Generates a fingerprint object from the given molecule, reaction, substruct, or path. For
reaction objects or reaction-derived paths and substructs, the resulting fingerprint object is
equivalent to the bitwise-OR of the following fingerprints:

the fingerprint of the reactant part,•
the fingerprint of the product part,•
a bit-shifted fingerprint of the product part.•

This behavior allows the fingerprint to serve as a structural screen for all
superstructure-matching and allows the fingerprint to provide some discrimination power
between reactant and product parts.

For reactions, the fingerprints tend to be quite dense, and are somewhat less efficient a
structural screens that for molecules. The main advantage of this scheme is the full
compatability of these reaction fingerprints with molecule fingerprints in the Daylight system.
Note also that this fingerprint scheme doesn't provide the most appropriate measure of
similarity for reactions.

dt_fp_differencefp (Handle object, integer minstep, integer maxstep,
integer size) => Handle fingerprint

Generates a difference fingerprint object from the given molecule, reaction, path, or substruct
object. This function is oriented towards reaction processing, so isn't very useful for
molecules and molecule-derived paths or substructs.

For a molecule or molecule-derived object, returns the normal fingerprint, (identical to
dt_fp_generatefp(3)).

For a reaction or reaction-derived object, returns the difference in fingerprint between the
reactant and product parts of the object as follows:

Generates the count of each path in the reactant part.1.
Generates the count of each path in the product part.2.
For any paths whose count changes from reactant to product part, sets a bit in the
final fingerprint.

3.

The net result of these operations is a fingerprint of the connectivity change for a reaction.
This is an extremely useful way to analyze and cluster reactions.

There is one important caveat for difference fingerprints: to work optimally, the reaction must
have unit stoichiometry. If not, missing atoms on either side of the reaction will result in
extraneous bits being set in the difference fingerprint.

12.9 Transforms

Transforms are very similar in behavior to patterns. Essentially the transform language is a subset of
SMARTS, with some additional specific requirements. These requirements are validated on input of

Daylight Toolkit Programmers' Guide

12.8.5 Fingerprints: 53

the transform. This also means that any valid SMIRKS is also a valid SMARTS. This also means that
a SMIRKS can be optimized by dt_smarts_opt(3). A more extensive discussion of the relationship of
SMILES, SMARTS, and SMIRKS can be found in the Daylight Theory Manual.

dt_smirkin(string SMIRKS) => Handle transform
Interprets the given input string as a SMIRKS and creates a transform object from the
SMIRKS.

dt_smarts_opt(string SMIRKS, integer vmatch) => string SMIRKS
Returns an optimized SMIRKS string. Remember, SMIRKS are a subset of SMARTS.
"vmatch" must be FALSE for transform SMIRKS. Optimizing a SMIRKS is useful because
the first step in application of a transform object is a SMARTS-match on either the reactant or
product side of the transform. Hence, the optimizations performed by dt_smarts_opt(3) are
also relevant to transforms.

dt_type(Handle transform) => integer TYP_TRANSFORM
For a transform object, returns the constant TYP_TRANSFORM.

dt_typename(Handle transform) => string "transform"
For a transform object, returns the string constant "transform".

dt_info(Handle transform, string "smirks") => string input SMIRKS
Returns the input SMIRKS string used to create the transform object.

dt_match(Handle transform, Handle target, integer limit) => Handle
pathset

Performs a SMARTS match, using the transform object as a pattern, and returning the pathset
over the target reaction. Note that any valid SMIRKS is also a valid SMARTS.

dt_pattern(Handle transform, integer role) => Handle pattern
Returns a molecule pattern object from the "role" part of the transform.

Transforms can be applied to molecule objects. The result of these operations is the creation of new
reaction objects which contain both the starting molecules and a set of newly-created molecules.
Transforms are bidirectional, they can be applied in either the forward or reverse directions. In effect,
transforms represent generic reactions. Specific instances of these generic reactions can be created
from the combination of a transform and a set of molecules, which act as reactants or products in the
specific reaction.

dt_transform(Handle transform, Handle som, integer direction,
integer limit) => Handle sequence of reactions
dt_utransform(Handle transform, Handle som, integer direction,
integer limit) => Handle sequence of reactions
dt_xtransform(Handle transform, Handle som, integer direction,
integer limit) => Handle sequence of reactions

Applies the given transform to the molecule or sequence of molecules "som". Note that the
molecule or sequence are not altered by the function. The result is a sequence of
newly-allocated reaction objects, which represent specific instances of the reaction. The
parameter "limit" controls whether only the first reaction found is returned or all of the
possible answers are returned. The "limit" parameter has the same semantics as in
dt_match(3).

The "direction" may be one of DX_FORWARD or DX_REVERSE. When direction is
DX_FORWARD, the given molecules are treated as reactants and the transform is applied in
the forward direction to the molecules. When "direction" is DX_REVERSE, the given
molecules are treated as products and the transform is applied in the reverse direction.

Daylight Toolkit Programmers' Guide

12.9 Transforms 54

The application of a transform logically occurs in two steps. In the forward direction, the
reactant side of the transform is matched, as SMARTS, against the set of molecules given.
Each place where the SMARTS matches is marked. In the second step, the atom and bond
changes in the transform are applied to the matched molecules.

The only difference between dt_transform(3) and dt_utransform(3) is the function which is
used to match the SMARTS expression (dt_match(3) and dt_umatch(3) respectively). The net
result is that with dt_utransform(3), the resulting answers are generated from the unique set of
matches, while with dt_transform(3), the complete set of answers results.

Similarly, dt_xtransform(3) uses dt_xmatch(3) for the initial SMARTS match. The net result
is that dt_xtransform(3) always returns exactly one new reaction. This new reaction may have
more than one application of the transform within it.

A transform (at least in one direction) can be thought of as a SMARTS expression plus a set
of atom and bond changes.

The resulting sequence of reaction objects are owned by the user. Both the sequence and the
reactions must be deallocated by the calling program when done with them. The given
molecules or sequence of molecules are not modified by the function.

The transform processing functions set atomic properties for the newly-created reaction atoms. These
properties are set in order to allow the user to correlate the SMIRKS with the resulting reaction. For
example, given the amide formation SMIRKS:

[C:1](=[O:2])Cl.[H][N:4][C:5]>>[C:1](=[O:2])[N:4][C:5]

and the reacting molecules:

CC(=O)Cl.NCCC

The result of this transformation will be a reaction, with the following atomic properties set:

USMILES: CCCN.CC(=O)Cl>>CCCNC(=O)C
tmap: 54 1 2 541 2
torder: 65 1 2 3 *97 8 (* has a value of 10)

The "tmap" property is the map class for the transform atom which matched this node in the reaction.
For example, the amine Nitrogens are map class "4" in the transform, hence the tmap property for the
Nitrogens in the resulting reaction are set to "4".

The "torder" property is the cardinal ordering of the reaction atoms, based on the match order of the
transform. Were one to reorder the reaction atoms based on this numbering, the order would
correspond to the ordering of the expressions in the SMIRKS. In the example, the original SMIRKS
has 10 atomic expressions total, and the "torder" properties go from 1 - 10. The value of 4 is missing
because the hydrogen is suppressed in the unique SMILES.

These properties can be accessed with the following code:

atoms = dt_stream(result_rxn, TYP_ATOM);
while (NULL_OB != (atom = dt_next(atoms)))
 {
 tmap = dt_integer(atom, 4, "tmap");

Daylight Toolkit Programmers' Guide

12.9 Transforms 55

 torder = dt_integer(atom, 6, "torder");
 }
dt_dealloc(atoms);

13. Program Object Toolkit

13.1 Introduction

Program objects are used to provide two-way communication with an external process, e.g., the clogp
program for computing hydrophobicity for a structure represented in SMILES. Using program
objects, a calling program can start an external program, send it input, receive its output, and perform
other tasks while the external program remains running and ready for more input.

A number of programs supporting program objects are supplied with the release of Daylight Software.
Most of these are supplied as contributed code, in the directory:

 $DY_ROOT/contrib/src/progob

The programs clogptalk and cmrtalk operate as program objects (in $DY_ROOT/bin).

13.2 Using Program Objects

Program objects are normal UNIX programs, scripts, etc. which communicate through standard input
and standard output using ASCII messages with a specifically defined protocol (the "PIPETALK"
protocol). Any executable within the UNIX environment which adheres to this protocol can be used
as a Program Object. Note that program object programs need not be Daylight Toolkit programs.
There are example program objects within the "contrib/src" directory in the standard distribution.

This approach allows a program to be used like a function, but without the need to link to the object
libraries underlying the program. For instance, linking a program to functions written in C (e.g.
X-windows) and in FORTRAN (e.g. the MedChem library) is extremely difficult in some versions of
UNIX.

This approach also avoids the high overhead associated with running external programs from files
whenever their functions are needed. For instance, some users have implemented the following
approach to clogp computation from a SMILES:

write the SMILES to a Thor datatree file, e.g. in.tdt,◊
exectute the clogp program via system("clogp /tmp/in.tdt /tmp/out.tdt"),◊
open the output .tdt file and interpret the results,◊
remove the .tdt files via system("/bin/rm -f /tmp/in.tdt /tmp/out.tdt").◊

Aside from all that file manipulation, this is an extremely slow method because the clogp program
must initialize itself each time a computation is run (although clogp's computations are fast, its
initialization is slow because it has to read in the fragment database, read in customizations, etc.) This
poor perfomance is due to the one-way nature of pipe communication via the shell. Use of clogp as a
program object eliminates such problems.

Program objects are created by the function dt_alloc_program() from an executable file name.
Messages consist of zero or more ASCII strings and are represented in the Daylight Toolkit by a

Daylight Toolkit Programmers' Guide

13. Program Object Toolkit 56

sequence of string objects. Once the calling program has created a program object, it can converse
with it using messages, via dt_converse(). Program objects are deallocated with dt_dealloc().

13.2.1 Welcome and Farewell Messages

The primary type of communication with a program object is that the calling program sends a
message and the program object responds with a message. There are two other situations where
program objects can send messages.

A program object sends an unsolicited message when it is first invoked; this is called the "welcome
message" and is obtained with dt_welcome().

All program objects must send a welcome message (although it may be empty), and all programs
which allocate program objects should call dt_welcome() after a sucessful return from
dt_alloc_program().

A program object also sends a message when it is terminated; this is called the "farewell message".
Calling dt_converse() with a NULL_OB message terminates the program and returns the farewell
message. Sending NULL_OB is like sending a program an end-of-file. Any further calls to
dt_converse() will produce empty messages. The program object should still be deallocated via
dt_dealloc(). It is acceptable to deallocate a program with dt_dealloc() at any time (however, the
farewell message will be lost).

13.2.2 Other Special Messages

There are several properties which are useful to know for all programs. A number of special messages
are defined which all program objects will respond to:

DX_PT_HELP respond with information about how to use the program
DX_PT_PROGRAM respond with the name of the program
DX_PT_VERSION respond with the integral version number of the program
DX_PT_NOTICE respond with copyright (and/or other) notices

These definitions aren't all that special, they are simply string constants which are sent to program
objects, e.g. DX_PT_HELP is defined as "Qwerty: Say HELP." All program objects should
respond to the above messages in some useful way.

You may define (and document!) such messages as needed, for instance the program clogptalk
recognizes the DX_TABLE message as a request for tabluated output (DX_TABLE is defined in
medchemtalk.h as "Set TABLEOUTPUT.").

It is probable that other special messages will be defined in the future. You may register messages
with Daylight Support - they will be included as comments in dt_progob.h so we (and others) will
know not to use them.

13.2.3 Program Object Toolkit Functions

dt_alloc_program(Handle args) => Handle prog
Allocates a program object and executes a program. The parameter 'args' is an object
containing the program name and any required arguements. 'Args' must be a stream or

Daylight Toolkit Programmers' Guide

13.2 Using Program Objects 57

sequence of objects which respond to dt_stringvalue(), or a single object which responds to
dt_stringvalue().

dt_welcome(Handle prog) => Handle sos
Return prog's welcome message, i.e., its response to being executed before being sent data.
All child programs which follow the pipetalk protocol write a welcome message (which may
be empty), so calling programs *must* call dt_welcome() after allocating a program object.

dt_converse(Handle prog, Handle msgob) => Handle sos
Send strings in msgob to prog as standard input. msgob may be a string object, a sequence of
string objects, or NULL_OB (means end- of-transmission). The return value is a sequence of
strings containing prog's standard output response. NULL_OB is returned on error (e.g.,
program inaccessible).

dt_delimiter(Handle prog) => Integer value
Gets the delimiter property for the program object. The delimiter property will be either
DX_PT_CR or DX_PT_NONE. DX_PT_CR (the default) means that returned messages from
the program object are delimited by 'newline', and the message is returned as a sequence of
string objects. DX_PT_NONE means that the returned messages are not delimited, and are
returned as a single string object. This string object may have multiple newlines in it, and will
have a trailing newline.

dt_setdelimiter(Handle prog, Integer value) => Boolean status
Sets the delimiter property for the program object. The delimiter property will be either
DX_PT_CR or DX_PT_NONE.

13.3 PIPETALK Protocol

The "pipetalk protocol" is the communication protocol which programs must follow if they are to be
successfully used as program objects. Note that the contributed examples implement this protocol, so
they can be modified rather than developed from scratch.

13.3.1 Definitions

End-of-message (EOM), end-of-transmission (EOT), and send-message- list (MSGLIST) strings are
defined in dt_progob.h as:

 #define DX_PT_EOM "Qwerty: Over."
 #define DX_PT_EOT "Qwerty: Over and out."
 #define DX_PT_MSGLIST "Qwerty: Say MSGLIST."

These definitions should not be changed. Programs should not write them on a single line for other
purposes (intended to be unlikely, given the "Qwerty: " prefix).

A message is defined as zero or more strings followed by the EOM string.

13.3.2 Receiving Messages

Messages are received by reading standard input until the receipt of a line containing only the EOM
string.

Note that input lines to a program object can be arbitrarily long. Programmers should be careful not to
use fixed-length buffers to receive input. The Daylight contributed code directory contains examples
showing the correct way for a program object to read from standard input (see
$DY_ROOT/contrib/src/c/progob).

Daylight Toolkit Programmers' Guide

13.2.3 Program Object Toolkit Functions 58

13.3.3 Sending Messages

All messages must written to standard output in this manner:

 message contents as string followed by newline
 EOT message string followed by newline
 flush standard output

13.3.4 Initial Response to Execution

Programs must send an initial "welcome" message upon execution. The sent message may be empty
(i.e., the program must send at least the EOM line).

13.3.5 Program Operation

Programs operate by receiving a message then sending a message. Each time a message is received,
one message must be sent. The sent message may be empty (i.e., the program must send only EOM).
(It's OK to start sending while reading.)

To prevent "deadlock", it is critical that programs never send unsolicited messages, and that they
never begin their replies until the entire input message is received (i.e. the EOM message is
encountered). In addition, the program must ensure that its output buffer (standard output) is "flushed"
after each message, as otherwise the parent program will sit waiting forever for a message that is
stuck in the child program's internal buffers.

13.3.6 Response to Special Messages

The following strings are defined in dt_progob.h:

 #define DX_PT_HELP "Qwerty: Say HELP."
 #define DX_PT_PROGRAM "Qwerty: Say PROGRAM."
 #define DX_PT_VERSION "Qwerty: Say VERSION."
 #define DX_PT_NOTICE "Qwerty: Say NOTICE."
 #define DX_PT_MSGLIST "Qwerty: Say MSGLIST."

On receipt of one of the first four strings, programs should respond with an appropriate message
(containing help on program operation, program name, program version, and copyright notice,
respectively).

On receipt of a DX_PT_MSGLIST message, programs should send a message containing all other
recognized control strings. This response can be empty. Each of the supplied messages should be
responded to in a sensible manner, but it is left entirely up to program to do so.

13.3.7 Program Termination

On receipt of an EOT message, programs must send their final "farewell" message (which may be
empty) and go into a quiescent state awaiting EOF on standard input, at which time the program must
exit. While in the quiescent state (after EOT but before EOF), the program should respond to all
messages with an empty message (just EOM).

Daylight Toolkit Programmers' Guide

13.3.3 Sending Messages 59

13.3.8 Naming Convention

By convention, programs which communicate via pipetalk protocol have names that end in "talk", e.g.
clogptalk.

14. THOR and Merline Toolkit: Servers

14.1 Introduction: THOR and Merlin Objects

The THOR and Merlin Toolkits provide access to the THOR and Merlin "views" of databases,
respectively. Although Merlin and THOR present very different views of the data (THOR's
retrieval/storage versus Merlin's exploratory data analysis), the two systems share many features, and
operate on the same databases. Because of this, many features of the THOR and Merlin Toolkit are
presented together.

An old adage might be paraphrased here: "An example is worth a thousand words." Many tutorial
examples of Thor and Merlin Toolkit usage can be found in the "contrib" directory:

 $DY_ROOT/contrib/src/thor/
 $DY_ROOT/contrib/src/merlin/

We strongly encourage you to study these examples before attempting to write Thor and/or Merlin
Toolkit programs.

THOR and Merlin objects have the same basic characteristics as the objects introduced in earlier
chapters. They are opaque, respond to most of the standard polymorphic functions, are subject to
revocation, and so forth. However, THOR and Merlin objects have a more concrete existence since
they represent real data in a database. Thus, unlike a molecule object which disappears forever when
deallocated, some THOR and Merlin objects represent things that "live on" even after the Toolkit
deallocates them.

The following illustrates the object hierarchies of THOR and Merlin, showing which objects are
common to both:

Daylight Toolkit Programmers' Guide

13.3.8 Naming Convention 60

Although this drawing shows the Server and Database objects as common to both Toolkits, there are
actually different object types for each; THOR has objects of TYP_SERVER and TYP_DATABASE,
while Merlin has objects of TYP_MERSERVER and TYP_POOL. Since polymorphism makes these
objects behave nearly identically, we present them as a single concept. As you get into the details of
their use, the differences will become apparent.

Note: By historical accident THOR server objects get the simple designation TYP_SERVER, while
Merlin server objects are the more specific TYP_MERSERVER.

Below is a brief outline of each object type.

THOR and Merlin Toolkits:

A server object represents a connection to a server. The server object "knows" about the
server's network address, the interprocess- communication mechanisms, which databases the
are open on the server, and so forth. Server objects are discussed in detail in this chapter.

◊

A database object represents an open database. In THOR this is the open database files on
disk; in Merlin it is the in-memory image of the database's data.

◊

A datatype object represents the definition of a datatype. Datatypes define the meaning of
data in a database; each dataitem in THOR is associated with its datatype (shown with a
dotted line, above).

◊

A fieldtype object is a constituent part of a datatype object, and defines the meaning of one
datafield within a dataitem; each datafield object in THOR and each column object in Merlin
is associated with its fieldtype (shown with dotted lines, above).

◊

THOR Toolkit:

A datatree object contains a THOR Datatree (TDT) from the database.◊
A dataitem object represents one dataitem from a TDT. Each dataitem object has a datatype
object associated with it (shown with a dotted line, above) that defines its meaning, and has
one or more child fieldtype objects for its datafields.

◊

A datafield object contains one datum: a string of characters. It represents the basic unit of
information in the THOR system. This string of characters might be interpreted by an
application as a number, text, or some other way (including binary data).

◊

Merlin Toolkit:

A hitlist object represents an ordered subset of the datatrees in a THOR database.◊
A column object represents a "vertical slice" through the database: one datum of a particular
fieldtype from each TDT in the database. For example, a column of $NAM would contain
one name for each database entry.

◊

The above brief descriptions are just a quick sketch of the object types available in the THOR and
Merlin Toolkits. A detailed description of each is given in this and subsequent chapters.

14.2 Connecting to a Server

Most of the material in this chapter requires an acquaintance with the material in the Daylight Theory
Manual and Daylight System Administrator's Guide. You should read these for an introduction to the
concepts of server/client systems, security, search paths, file ownership, and network configuration.

THOR and Merlin are both client/server systems. The Merlin and THOR Toolkits provide a
programmer's library for the client side of the client/server system -- that is, the Toolkits provide the
mechanisms you need to connect to and communicate with the server side of the system. A server

Daylight Toolkit Programmers' Guide

14.1 Introduction: THOR and Merlin Objects 61

object represents a connection to a THOR or Merlin server. The object "knows" about the server's
address, the interprocess-communication mechanisms, which databases are open on the server, and so
forth.

When a client connects to a THOR or Merlin server, a new object of type TYP_SERVER2 or
TYP_MERSERVER is created. The server-object is used in subsequent calls to create, open, and
close databases, and other database operations, and in calls to modify security, search paths, and
related administrative tasks.

A server object becomes the parent object of any databases ("pools" in Merlin) that are opened via the
server (see the chapter on POLYMORPHIC FUNCTIONS for a discussion of parent objects and base
objects). This implies that all such database objects can only exist while the server object exists (the
actual databases, of course, exist until you erase them; here we are talking about the Toolkit objects
that represent databases). If the connection to the server is broken (via dt_dealloc(server)), all
databases on that server will be closed, and their child objects will be deallocated. In the case of
accidental disconnection, as when a THOR or Merlin client program "crashes", the server itself closes
the databases to insure no data are lost and to free allocated resources (memory, open files); if a server
crashes, the client program will report "lost connection" for any subsequent database transactions.

The following functions connect to Merlin and Thor servers, respectively:

dt_mer_server(string host /* server's hostname */
 string service, /* service name */
 string userid, /* user's login name */
 string passwd, /* user's password */
 integer isnew) /* existing or new? */
 ==> Handle server

dt_thor_server(string host /* server's hostname */
 string service, /* service name */
 string userid, /* user's login name */
 string passwd, /* user's password */
 integer isnew) /* existing or new? */
 ==> Handle server

Connects to a server on the specified host using the specified service name; returns an object
of type TYP_SERVER (THOR) or TYP_MERSERVER (Merlin). If the connection already
exists, returns the handle that was originally allocated for the server (see the parameter isnew,
below).

The parameters host and service specify the machine on which the Thor or Merlin server
is running and the TCP/IP port to be used for establishing communications.

The parameters userid and passwd are used by the server to verify that you have
permission to connect and "log you in".

There is no built-in limit to the number of servers to which a single client can connect simultaneously.
However, the operating system on which the client program is running may restrict the number of
open files or otherwise limit resources in a way that limits the number of servers that can be accessed;
similarly the number of clients one server can support may be restricted by the operating system of
the server's machine.

Note that there is no "disconnect" function; instead, you deallocate the server object (see dt_dealloc())
to break the connection and free the resources (databases, datatrees, ...) associated with the server.

Daylight Toolkit Programmers' Guide

14.2 Connecting to a Server 62

Most of the polymorphic functions behave as expected with server objects. There are several
functions which are worth further discussion:

dt_set_server_timeout(Integer value) ==> Integer old
Sets a connection timeout value for the toolkit. In general, it is not possible to predict whether
or not a server connection will finish. It is possible for the connect functions to go away
forever. In 4.61, it is possible to set a timeout, after which time the connect function will
return failure. The default is not to use a timeout (timeout is zero).

dt_getusers(Handle server) ==> Handle sos
Returns a sequence of strings (SOS); each string object contains the name of a currently
connected user and the number of connections that user has to the server.

dt_ping(Handle server, string text) ==> boolean ok
"Pings" the server: sends the text on a round-trip to the server and back to verify that the
connection is working correctly.

dt_server(Handle ob) ==> Handle server
This polymorphic "convenience" function works on any descendent object of a server (e.g.
databases, hitlists, TDTs, etc.). It returns the server object that is the ultimate "ancestor" of the
specified object. For example:

 dt_server(database) == dt_parent(database)
 dt_server(hitlist) == dt_parent(dt_parent(hitlist))
 dt_server(fieldtype) == dt_parent(dt_parent(dt_parent(fieldtype)))

14.3 Security

The THOR and Merlin servers are entirely responsible for security in the Daylight system. The basic
idea is that clients aren't trusted; if the servers trusted the client programs, a devious user could easily
write a program to masquerade as a "proper" client, and could thereby gain access to databases. If you
are concerned with security, you should never assume that client programs are legitimate; only trust
the servers' security mechanisms. Client security is no security.

The THOR and Merlin servers share a single security mechanism, and usually share a single
passwords file. (See the Daylight THOR-Merlin Administration Manual for how servers are started
with different passwords files.) This implies that all changes that affect a THOR server (such as
adding a user or changing a password) will also affect a Merlin server running on the same machine.
This is also true for multiple THOR or Merlin servers running on a single machine: unless they were
started with options to give each a separate passwords file, all will share changes made to any.

14.3.1 Restricted user DX_INFO_USER

A special user, DX_INFO_USER (defined in the Merlin and THOR "include" files), is restricted by
the servers to a subset of the capabilities normally available. Specifically, DX_INFO_USER can't
open databases or ask about security information; this user can only connect to the servers and ask
what databases are available.

The purpose of DX_INFO_USER is to allow client programs to query all available servers and
assemble a complete list of databases. A user can thus avoid providing the user/password login for
every server, and instead only has to provide the user/password for those servers that have databases
of interest.

Daylight Toolkit Programmers' Guide

14.3 Security 63

Note that the restricted user DX_INFO_USER appears in the passwords file like any other user; if it is
removed, or if a password is added for DX_INFO_USER, the "no-login" query capabilities will not
be available. This allows administrators at particularly security- conscious sites to disable this feature.
Thus, programmers who take advantage of the DX_INFO_USER capabilities must be prepared for it
to be unavailable.

The specific Toolkit functions available to DX_INFO_USER are:

dt_mer_server()
dt_ping()
dt_getdatabases()
dt_exists()
dt_info()
dt_ispublic()
dt_isopen()

14.3.2 Adding and Changing Users and Passwords

dt_setpassword(Handle sh, string who, string authorizing_pw, string
value) ==> boolean ok

Changes entries in the server's passwords file. This function is used to add or delete users,
change their passwords, and to add "equivalent hosts" or "restricted hosts". See the Daylight
THOR-Merlin Administration Manual for more information about server security.

dt_getpasswords(Handle server) ==> Handle sos
Returns a sequence of strings (SOS), each string-object of which contains one line from the
server's passwords file. There are two types of entries in the passwords file: user/password
entries, and host entries.

15. THOR and Merlin Toolkits: Databases

15.1 Introduction

Although THOR and Merlin present very different views of the data in a database, both systems
present the very same data. Because of this, most operations on databases are identical in the THOR
and Merlin Toolkits. This includes opening and closing databases, setting the server's "search path"
security operations, and datatype-object operations. This chapter covers all of these common
operations.

An old adage might be paraphrased here: "An example is worth a thousand words" Many tutorial
examples of Thor and Merlin Toolkit usage can be found in the "contrib" directory:

 $DY_ROOT/contrib/src/thor/
 $DY_ROOT/contrib/src/merlin/

We strongly encourage you to study these examples before attempting to write Thor and/or Merlin
Toolkit programs.

15.2 Search Path

THOR and Merlin servers maintain a "search path" -- a list of directories which are to be searched for

Daylight Toolkit Programmers' Guide

14.3.1 Restricted user DX_INFO_USER 64

databases (see the Daylight System Administration Manual for more details). (Note that the search
path is a property of a server, not a database. We put it in the databases chapter rather than the
server chapter because it fits with other database operations.)

Note that the directories in the search path are interpreted by the server's operating system, hence are
in a format appropriate to that operating system. For example, a Macintosh client connected to a
UNIX server would use UNIX syntax to specify a database path (e.g. "/thordb/mydb"). Similarly,
environment variables are interpreted on the server's operating system, not the client's.

dt_getsearchpath(Handle server) ==> Handle sos
Returns sequence of strings (SOS), each string-object of which contains a directory in the
server's search path. The order of directories in the SOS is the order in which the directories
will be searched to find a database.

dt_setsearchpath(Handle server, string password, string path,
integer replace);

Sets the server's search-path. You can either replace the current path, or add to it.
dt_getdatabases(Handle server) ==> Handle sos

Returns a sequence of string objects (SOS) containing all databases in server's search path.

15.3 Creating and Configuring Databases

Database creation is only done by the THOR server, so the functions in this section don't apply to the
Merlin Toolkit. The following functions are used to create and configure a THOR database.

15.3.1 Database Creation

dt_thor_createdb(Handle server,int dlen, string path, int sizepri,
int sizexref) => Handle database

Creates a new empty THOR database and opens it with "executive" permission. The
parameter path must be a complete path, not a relative path or just a filename.

The parameters sizepri and sizexref are the requested sizes of the primary and
cross-reference hash tables, respectively. For more information about database sizes, see the
reference page for this function and the Daylight THOR-Merlin Administration Manual.

15.3.2 Database Configuration

Each database can have one, two or three auxiallary databases associated with it:

The datatypes database: Contains special-purpose datatype- definition TDTs (e.g. "$D_V...|".
Each time a new datatype is encountered, its definition is retrieved from this database. For
more information about datatypes, see the Daylight Theory Guide.

◊

The indirect-data database. Contains the expansions for indirect references. For more
information about indirect data, see the Daylight Theory Guide.

◊

Generally speaking:

a datatypes database will have no associated databases◊
an indirect-data database will have a datatypes database associated with it that defines the
indirect-datatype definitions

◊

a regular chemical database will always have a datatypes database and will often have an
indirect-data database.

◊

Daylight Toolkit Programmers' Guide

15.2 Search Path 65

dt_thor_getauxillarydb(Handle database, integer type) => string path
Returns the path (directory, filename, and suffix) of the auxillary database associated with db
of type type. Type will be either DX_THOR_DATATYPESDB or
DX_THOR_INDIRECTDB.

dt_thor_setauxillarydb(Handle database, integer type, string path)
=> boolean ok

Sets the database that is to be associated with db as type type, where type is either
DX_THOR_DATATYPESDB or DX_THOR_INDIRECTDB.

15.3.3 Database Crunching

After a series of deletions and/or replacements, a database's data files may have "holes" in them. For
example, if a TDT is enlarged (e.g. new dataitems added), it will no longer fit in its original spot; new
space is allocated for it and the old space is marked "unused". THOR can sometimes re-use these
available spaces (depending on the server's implementation and configuration), but generally the
server is unable to make 100% use of the space in a database that has been extensively modified. This
can cause a database to grow to be much larger than the amount of actual data it contains.

Crunching is the process of moving all data "forward" in the file to fill in these unused spaces, leaving
all unused space at the end of the file; a pass is made through the entire database, reading and re-
writing data and rebuilding the hash table. Once this is done, the file is truncated to get rid of the
unused space at the end, freeing the file-system space for other uses.

The crunch operation should not be undertaken lightly, as the crunch operation is indivisible; while a
crunch is under way, the server doesn't respond to other clients. Depending on database size, a crunch
can take anywhere from several seconds to many minutes.

During a crunch, the database is temporarily in invalid states; for example, the hash table file is
invalid until the crunch operation is complete. The database may be corrupted if some error occurs
(usually an interruption such as a power failure) midway through a crunch. The actual data records
may not be damaged, but hash information is usually destroyed; the data are no longer accessible. In
such a case, the thordump(1) utility may be required to recover the data.

dt_thor_crunchdata(Handle database) => boolean
Crunches (recovers unused space from) the primary data file of a database.

dt_thor_crunchxref(Handle database) => boolean
Crunches (recovers unused space from) the cross-reference data file of a database.

dt_thor_autocrunch_limit(Handle database, float limit) => float
limit

The database's "autocrunch" parameter is used to trigger an automatic database crunch
whenever the fraction of free space exceeds a limit. The fraction is computed as:

 bytes_free
 free space = -----------------------
 bytes free + bytes used

This function both sets and returns the "autocrunch" limit -- the fraction of free space which,
if exceeded, will trigger an automatic crunch. The limit applies to both the primary and
cross-reference data files. If limit is <= 0.0, the database's limit is unaffected; this serves as
a way to query the current value without modifying it. Values greater than 1.0 are not
permitted. A value of 1.0 will disable autocrunching.

Daylight Toolkit Programmers' Guide

15.3.2 Database Configuration 66

15.4 Opening and Closing Databases

The Toolkit calls to open and close databases in THOR and Merlin are identical, but the actual
operations performed by the two servers are quite different:

THOR opens all of the database's data files (the primary and cross-reference data files, and
the primary and cross-reference hash tables). These files remain open as long as the database
is open. If caching is enabled (see below), data are read from the disk files into the Thor
server's memory. If multiple clients open the same database, the server creates a "client
context" for each, but shares the database resources (i.e. the files) among the clients.

◊

Merlin opens the primary data file, reads its contents into memory, and closes the file. The
memory remains in use as long as the database is in use (by any user). Each client that opens
the same database has its own "client context" in the server, but all clients share the database's
in-memory image.

◊

dt_open(Handle server, string dbname, string permission, string
password,RETURN integer isnew) ==> Handle database

Opens a database on a THOR or Merlin server. The path is the path (directories and
filename) of the database on the server machine. If it is a simple filename (no directory
information), the server will search its search path for the database -- the first database found
in the path that matches the name is used. If path contains any directory information, it must
be a complete path - partial and relative paths are not allowed. When a complete path is
specified, the server's search path is ignored.

The string perm is one of "r", "w", or "e", representing read, read/write, and executive
permission. The password must be the database's password for the requested permission or
higher (i.e. the executive password always works, the write password works for reading or
writing, and the read password only works for reading.)

dt_exists (Handle server, string dbname) ==> boolean isopen
Returns TRUE if the named database exists.

dt_isopen (Handle server, string dbname) ==> boolean isopen
Returns TRUE if the named database is already open (either open by some other client, or
marked "hold" - see dt_hold() and below).

dt_ispublic(Handle server, string name) ==> boolean ispublic
Returns TRUE if the named database is "public"; that is, if it has an empty read-permission
password so that it can be opened without a password.

15.5 Memory Usage: Cache and Hold

15.5.1 Merlin HOLD

It can take a long time for a Thor or Merlin server to open a database: Merlin's in-memory high-speed
searching requires that it scan the entire database into memory; Thor provides various levels of
"caching" -- loading heavily-used parts of the database (or even all of the database) into memory to
improve performance. Because of the potentially high overhead to open a database, both Thor and
Merlin provide a "hold" for databases which causes the database to remain open even when no client
is using it. For Merlin, "hold" means the database is retained in memory. For Thor, "hold" means the
database files remain open, and cached portions of the database remain in memory.

dt_hold(Handle database, string thorpassword) ==> boolean ok
Marks the specified database "held", so that it will be retained in the Merlin server's memory.
The password is that of the user "thor", and must be supplied even if you connected to the

Daylight Toolkit Programmers' Guide

15.4 Opening and Closing Databases 67

server as the user "thor". Returns TRUE if the operation succeeded. The operation fails if the
server determines that the password is incorrect, or if database is not a Merlin database (pool)
object.

dt_isheld(Handle database) ==> boolean isheld
Returns TRUE if database is marked "hold". Returns FALSE if the database is not marked
"hold", or if database is not a Merlin database (pool) object.

dt_release(Handle database, string execpassword) ==> boolean ok
Marks the specified database "released" (not held), so that it will be removed from the Merlin
server's memory when the last client closes it. The password is that of the user "thor", and
must be supplied even if you connected to the server as the user "thor". Returns TRUE if the
operation succeeded. The operation fails if the server determines that the password is
incorrect, or if database is not a Merlin database (pool) object. Note that the database is not
released as long as any client (including the one performing this operation) has the database
open. Clients can be "evicted" to force closure; see dt_evict().

15.5.2 THOR Caching

A THOR server's performance can be improved by "caching": storing frequently-used sub-parts of the
database in the server's memory. This is discussed in more detail in the Daylight Theory Manual and
the Daylight System Administration Manual.

Remember that a server is free to silently ignore any and all caching requests, depending on the
particular implementation and the server's configuration.

Valid caching levels are symbolic constants in the THOR Toolkit:

Thor Caching Levels
DX_THOR_OFF no caching
DX_THOR_RTABLE write-through cache of hash table
DX_THOR_TABLE complete cache of hash table
DX_THOR_RALL write-through cache of everything
DX_THOR_ALL complete cache of everything

The following functions control caching:

dt_thor_cache(Handle database, int level) => boolean
Enable caching for the database. The parameter level indicates what type of caching to
perform; see the table above.

dt_thor_cachecontrol(Handle database, int when, int level) =>
boolean

Overrides cache requests from normal users; the cache-control specification becomes a
property of the database, and remains in effect when the database is closed and reopened.
Requires executive permission. The parameter level indicates how much caching to
perform, as described above. The parameter when indicates:

DX_THOR_CACHE_NEVER
Caching is always disabled; caching requests from other clients are
prohibited and are silently ignored.

DX_THOR_CACHE_OK

Daylight Toolkit Programmers' Guide

15.5.1 Merlin HOLD 68

Caching requests from clients are allowed; the parameter level is
ignored. This is the default.

DX_THOR_CACHE_ALWAYS
Caching is forced whenever a database is opened, to the level
specified by level; caching requests from other clients are prohibited
and are silently ignored.

dt_thor_cachesync(Handle database) => boolean
Forces all cached data to be written to the disk immediately. This should only be done
occasionally, as it is an "atomic" operation -- the entire sync is completed before any other
client requests are served, which can adversely affect performance.

15.6 Database Security

There is only one function for managing the security of databases. Note that it is polymorphic; it also
applies to server objects; its behavior when applied to server objects is described in the Server
Security Functions chapter of this manual.

dt_setpassword(Handle database, string what, string
authorizing_pw,string newpw) => boolean

Changes a password for the database.

Note that when a database's password is changed any existing users of that database are
unaffected; a client program can keep a database open indefinitely even though the password
used to open the database is no longer valid. Authorization is only checked when the database
is opened.

The string what indicates which of the three passwords is to be changed; it must be one of "r",
"w", or "e", for read, write, or executive passwords, respectively.

15.7 Record Locking

Thor provides a mechanism for "locking" a TDT ("record"). When a client program locks a record,
the record is said to be "owned" by that client. The owner of a record has exclusive write access to
that record; no other client can modify or delete that record (although they can read the record). A
record can only be locked by one client at a time.

Record locking is an all-or-nothing affair: Conceptually, if record locking is enforced, then all records
must be locked before they can be modified. In practice, if you write an unlocked record, it is
automatically locked, written, then unlocked. This means if another client has that record locked, your
write will fail due to a lock violation.

Once a record is locked, the client that owns the lock can do the following:

Change the record:
The client with the lock can modify the record; no other client can.

Write the record to the database:
If a modified, locked record is written to the database, the changes are
"invisible" to other clients until that record is unlocked ("committed"). Other
clients will "see" the original record, even though the client holding the lock
sees the changes.

Daylight Toolkit Programmers' Guide

15.5.2 THOR Caching 69

Delete the record:
A deletion is essentially the same as a change: Only the owner of the lock can
delete the record, and the record will appear unchanged (undeleted) to other
clients until it is unlocked ("committed"). Deleting a record does not unlock
it -- the lock remains in effect until it is explicitely removed (which causes
the deletion to be "committed").

Rollback modifications:
As long as a record remains locked, it can be "rolled back" to its original
state. That is, if it has been modified or deleted, those changes are undone by
the "rollback" operation. Rolling a record back does not unlock the record.

Commit modifications:
When the record is unlocked, it is "committed". That is, all modifications are
finalized and become visible to other clients using the database. This includes
deletion -- deletions take effect when the record is unlocked.

When a record is locked by one client, all other clients that try to use the record are restricted to
read-only operations. That is, they can only retrieve and examine the record (see dt_thor_tdtget()),
and find out has it locked (see dt_thor_tdtlockedby()).

It is possible to lock a record that does not exist. This is commonly necessary when writing a new
record to the database -- the record is locked, then written and finally unlocked ("committed").

The actual record locks are maintained by the Thor server. If a client disconnects from a Thor server
or closes a database while it still has records locked, the locks are automatically discarded and the
records are "rolled back". Any changes made but not committed are lost. Locks can only be retained
while a client is connected to a Thor server and has a database open.

Record locking is not necessary in most situations. Thor's ability to merge records makes it possible
for users to simultaneously modify records with little chance of conflicts. On the rare occasion when
conflicts arise, Thor's timestamp facility provides adequate warning.

The following functions control locking enforcement:

dt_thor_settdtlocking(Handle database, string password, dt_Integer
enforce_locking) ==> boolean OK

Sets or unsets "record locking" enforcement for THOR database. If enforce_locking is
TRUE, locking is enforced; if it is FALSE, locking is disabled.

You can't change record locking enforcement while the database is in use (i.e. open by any
other client).

When record locking is enforced, records that are retrieved from a writeable database are
automatically locked (see dt_thor_tdtget()). A writeable database is one opened with "w" or
"e" permission using dt_open().

Record locking is a permanent property of the database (i.e. it is retained when the database is
closed and reopened), and it applies to all client programs using the database.

dt_thor_tdtdttlocking(Handle database)
Returns TRUE or FALSE, indicating respectively that record locking is or is not enforced for
the specified database.

Other functions related to or affectd by record-locking enforcement are:

Daylight Toolkit Programmers' Guide

15.7 Record Locking 70

dt_thor_tdtget
dt_thor_tdtget_raw
dt_thor_tdtlockedby
dt_thor_tdtput
dt_thor_tdtput_raw
dt_thor_tdtremove
dt_thor_tdtremove_raw

16. THOR and MERLIN Toolkits: Datatypes

16.1 Datatype and Fieldtype Objects

The syntax and semantics of each datum (i.e. each datafield) in a THOR database or Merlin database
are defined by a datatype definition. In this chapter we examine how the THOR and Merlin Toolkits
represent these datatype definitions as objects, and how to get a datatype's properties via its datatype
object. Datatype definitions are discussed in detail in the Daylight Theory Manual, and the practical
aspects of creating and loading datatype definitions into a database are discussed in the Daylight
System Administration Manual.

A datatype object represents the definition of a datatype in object form. Datatype objects are
considered a constituent part of a database or pool: They are automatically created when the database
or pool is opened, and deallocated when it is closed. Datatype objects always exist for the life of the
parent database or pool; they cannot be deallocated by dt_dealloc(), nor can they be copied by
dt_copy().

A fieldtype object, a child of the datatype object, represents the sub-part of a datatype definition for a
particular field in the datatype. For example, if a datatype defines four datafields, the datatype object
will have four child fieldtype objects. Like datatype objects, fieldtype objects cannot be deallocated or
copied.

If the definition of a datatype is modified while the database or pool is open (that is, the
datatype-definition TDTs are re-loaded or edited), the datatype or fieldtype objects are not affected by
the change; the database or pool must be closed and reopened before the change will take effect.

16.2 Getting Datatype and Fieldtype Objects

There are several methods a program can use to get datatype-object handles.

A specific datatype can be retrieved by name from a database object; a stream over a database
will return all datatype objects; and any object associated with a datatype (e.g. dataitems in
THOR, columns in Merlin) can be asked for its datatype.

◊

Fieldtype objects can be retrieve via a stream over the datatype object, and any object
associated with a fieldtype (e.g. datafields in THOR, columns in Merlin) can be asked for its
fieldtype.

◊

If you are reading through this manual front-to-back, the uses of datatype objects may not yet be
apparent. Datatype objects are heavily used in the THOR and Merlin Toolkits when retrieving data
from THOR and Merlin. If you are unfamiliar with how TDTs are retrieved from a THOR server, or
how columns are created in a Merlin server, you should skim this material and return to it after
studying the chapters on those subjects.

Daylight Toolkit Programmers' Guide

16. THOR and MERLIN Toolkits: Datatypes 71

Functions for retrieving datatype objects and fieldtype objects are:

dt_stream(Handle database, integer TYP_DATATYPE)
Returns a stream of all datatypes objects in the THOR database or Merlin pool. For example:

 dstream = dt_stream(database, TYP_DATATYPE);
 while (NULL_OB != (datatype = dt_next(dstream)))
 /* do something with the datatype */

dt_stream(Handle datatype, integer TYP_FIELDTYPE)
Returns a stream of all fieldtype objects in the datatype object. For example:

 fstream = dt_stream(datatype, TYP_FIELDTYPE);
 while (NULL_OB != (fieldtype = dt_next(fstream)))
 /* do something with fieldtype */

dt_getdatatype(Handle database, string tag) => datatype
Retrieves a datatype's definition from the database db using the identifier tag. Returns a
datatype object, or NULL_OB if a problem is detected. There will be a problem, for example,
if there is no such datatype in db, or if the datatype's definition is badly formed.

Note that this function, called with identical parameters, will return the same handle. There is
never more than one copy of a particular datatype object.

dt_datatype(Handle obj) ==> Handle datatype
Returns an object's datatype. Works on dataitems and datafields (THOR), or columns
(Merlin).

dt_fieldtype(Handle obj) ==> Handle fieldtype
Returns an object's fieldtype object. Works on datafields (THOR), or columns (Merlin).

Functions for retrieving datatype properties are:
dt_dfnorm(Handle obj, integer norm) ==> boolean isnorm

Tests the object's normalization against "norm"; returns TRUE if "norm" is one of the object's
normalizations. The object can be a datafield or fieldtype (THOR), or a column or fieldtype
(Merlin). The detailed definitions of these normalizations are discussed in the Daylight
Theory Manual; the following is a brief synopsis:

DX_THOR_AUTOGEN generate second datafield from this
DX_THOR_USMILES unique SMILES
DX_THOR_USMILESANY unique SMILES, not TDT's root
DX_THOR_ASMILES absolute SMILES
DX_THOR_ASMILESANY absolute SMILES, not TDT's root
DX_THOR_GRAPH convert SMILES to GRAPH
DX_THOR_MAKEGRAPH produce a GRAPH subtree
DX_THOR_WHITE0 zap all spaces
DX_THOR_WHITE1 compress 2 or more spaces to one space
DX_THOR_WHITE2 compress 3 or more spaces to one space
DX_THOR_UPCASE convert lowercase a-z to uppercase A-Z
DX_THOR_DOWNCASE convert uppercase A-Z to lowercase a-z
DX_THOR_NOPUNCT remove all punctuation
DX_THOR_SOMEPUNCT remove some punctuation

Daylight Toolkit Programmers' Guide

16.2 Getting Datatype and Fieldtype Objects 72

DX_THOR_CASNUM insert hyphens, verify checksum
DX_THOR_D3D compute 3D hash
DX_THOR_REGEXP must match regexp
DX_THOR_SMILES_NTUPLE SMILES-ordered n-tuple data
DX_THOR_BINARY binary data
DX_THOR_READONLY field can't be set by user
DX_THOR_NUMERIC field is numeric
DX_THOR_INDIRECT indirect data field

dt_dfnormdata(Handle obj, integer norm) ==> string normdata
If a normalization has extra data (i.e. DX_THOR_REGEXP, DX_THOR_INDIR,
DX_THOR_SMILES_NTUPLE), returns a string containing that data.

dt_name(Handle obj) => string name
dt_briefname (dt_Handle obj) => string briefname
dt_summary(Handle obj) => string summary
dt_description(Handle obj) => string description

These functions return an object's name ("verbose tag"), brief name, summary, and long
description, respectively. They apply to datafield or fieldtype objects (THOR), or to column
and fieldtype objects (Merlin).

dt_tag(Handle obj) ==> string tag
Returns the internal tag (e.g. "$SMI") of and object; works on datatypes and fieldtypes; in
THOR also works on dataitems and datafields; in Merlin also works on columns.

17. THOR Toolkit: THOR Datatrees

Previous chapters discussed those aspects of the THOR Toolkit that are common with the Merlin
Toolkit: servers and security, databases and datatypes. In this chapter, we will cover the
THOR-specific capabilities of the THOR Toolkit.

17.1 THOR Streams

Streams are heavily used throughout THOR, in a way very analogous to their use in molecule objects.
Before moving on to the details of datatree, dataitem and datafield objects, we will spend a few words
discussing streams; methods for using the other THOR objects will be more apparent once the role of
streams is clear.

When working with molecule objects, one usually needs to access the constituent parts (atoms, bonds,
and cycles). The function dt_stream() is used for this purpose; for example, to get the atoms of a
molecule, one invokes dt_stream(mol, TYP_ATOM). All of the constituent parts of a molecule are
accessed this way; there is no other mechanism.

THOR objects' constituent parts are accessed the same way. For example, datafield objects are the
constituent parts of a dataitem; a stream created by dt_stream(di, TYP_DATAFIELD) will contain all
of the datafields in that dataitem.

Below is a description of the behavior of dt_stream() when applied to THOR objects. Although some
of these object types have not yet been formally introduced, they are all presented here for
completeness. If this is the first time you are reading through this material, you should skim through it

Daylight Toolkit Programmers' Guide

17. THOR Toolkit: THOR Datatrees 73

just to get the general idea, then return later for a more thorough reading.

dt_stream(Handle thor_ob, int typeval) => stream
A stream over a THOR object contains the constituent parts that are of the specified type. The
parameter thor_ob becomes the stream's base object (see dt_base()). If the base object is
modified, the stream is deallocated and its handle is revoked.

The stream's contents will depend on the type of thor_ob; in the following, assume that
datafield is an object of TYP_DATAFIELD, dataitem is TYP_DATAITEM, and so forth:

dt_stream(datafield,typeval)
Returns NULL_OB for any typeval; there are no constituent parts to a datafield
object.

dt_stream(dataitem,typeval)
Returns a stream of the datafields in the dataitem when typeval is
TYP_DATAFIELD; NULL_OB for any other value of typeval.

dt_stream(datatree,typeval)
If typeval is TYP_DATATREE, returns a stream containing all of the subtrees in the
TDT object. Each subtree object is itself a TDT to which dt_stream() can be applied.

If typeval is TYP_DATAITEM, returns a stream containing all of the dataitems
attached directly to the TDT object (i.e. those data associated with the root identifier,
but not dataitems that are part of subtree objects). The first dataitem object in the
stream is always the root identifier itself; subsequent dataitem objects are data about
the root identifier.

If typeval is TYP_ANY, returns a stream containing both the dataitem objects and the
subtree objects.

Any other value of typeval will return NULL_OB.
dt_stream(datatype,typeval)

Returns NULL_OB; there are no constituent parts to a datatype object.
dt_stream(database,typeval)

(See the advice below regarding this use of dt_stream())

If typeval is TYP_DATATREE, returns a stream of all TDTs in the database. Such
streams are unusual in that the object returned is created as it is needed. And unlike
other types of streams, if a stream of TDT objects over a database is reset, it will
re-create the objects if they have been deallocated. This allows you to get an object
from the stream, operate on it, then discard it before moving to the next object.
Without this behavior, it would be impossible to use streams over a database, as the
number and sizes of the objects is often quite large.

If typeval is TYP_STRING returns a stream of string objects containing the lexical
representation of all TDTs in the database (indirect data are not expanded). Like
streams of datatree objects, the string objects are created "on demand"; you must take
care to deallocate them as you go. Furthermore, if you reset a stream of string objects
over a database, you will get different objects the second time through. Each call to
dt_next() causes a new string object to be created. No other stream in the Daylight
Toolkit behaves this way (i.e. streams ordinarily return the same objects the second
time through).

Daylight Toolkit Programmers' Guide

17.1 THOR Streams 74

If typeval is TYP_DATATYPE, returns a stream of all datatype objects defined for
the database. This type of stream is quite ordinary compared with the previous two,
and behaves like "normal" streams in the Daylight Toolkit.

dt_stream(thorserver,typeval)
If typeval is TYP_DATABASE, returns a stream of all database objects that have
been opened by this client on the server. Any other value of typeval will return
NULL_OB.

The details and subtleties of the use of streams will become more apparent as we describe each THOR
object type and the functions that operate on it. For now, simply keep in mind that streams over
THOR objects work in a manner very parallel to their use in the SMILES Toolkit: They return the
constituent parts of THOR objects.

You may have noticed that a stream can be formed that contains every TDT object in a database; this
might tempt you to use this functionality to turn THOR into a searching system rather than its usual
use as a look-up system (e.g. "Read through the database and find thus-and-such..."). This, in general,
is a bad idea.

THOR's power comes from its ability to handle ambiguous identifiers, to look up TDTs very quickly,
and its use of SMILES and hash tables. It is not designed to search through the entire database as one
might a relational database. Although THOR streams certainly give you the power to do exactly this,
it would be a poor use of THOR. Daylight's Merlin Toolkit is designed for searching; use it instead of
THOR for such tasks.

The purpose of a stream that contains all the TDTs in a database is to provide a way to dump the
database's entire contents; dt_stream() is ideally suited to this use.

17.2 Datatree Objects

In this section, we get to the heart of the matter: data storage and retrieval via TDT objects. The actual
data stored in a database is accessible through these objects.

17.2.1 Creating Datatree Objects

The primary way to create TDT object is to retrieve it from a database using dt_thor_tdtget(). There is
no way to create a TDT "from scratch", i.e. there is no such function as dt_alloc_tdt(). Instead,
dt_thor_tdtget() has a parameter that will cause a new TDT to be created if it can't be found in the
database. The idea is that you don't want to allocate an empty datatree for an identifier that already
exists in the database, as you would very likely overwrite the existing data. By using dt_thor_tdtget()
to create new TDTs, you are forced to examine the database first, hence are less likely to lose data.

SMILES is usually the root (main topic) of a TDT, but there is no requirement that this be the case. If
you have data for a non-SMILES identifier and don't know the structure of the molecule (or the
identifier is not for a molecule, i.e. "pine tar"), you can create a TDT with a non-SMILES root
identifier.

THOR goes to considerable trouble to create a SMILES root for a TDT whenever possible For
example, if you create a TDT with a $CAS number as its root and a $SMI subtree, THOR will
recognize the $SMI and will invert the tree, making the $SMI part the root. Similarly, if you create a
TDT with absolute SMILES in it but no unique SMILES, THOR will convert the absolute SMILES to
a unique SMILES and put that at the tree's root. If you do store a non-SMILES-rooted TDT, then later
store a SMILES-rooted TDT with the former identifier as a subtopic, THOR will automatically merge

Daylight Toolkit Programmers' Guide

17.2 Datatree Objects 75

the data from the former TDT into the new SMILES-rooted TDT.

THOR does not allow non-SMILES-rooted TDT to have any subtopics (subtrees). The idea is that
only structure (e.g. SMILES) is a valid main topic, as it is the only non-arbitrary identifier that works
in this role. You can create such a TDT, and (as described above) THOR will try to find a SMILES
somewhere in it, and rearrange the TDT to put a SMILES "on top". But if the attempt to rearrange
doesn't result in a SMILES-rooted TDT, the TDT can have no subtrees, only data about the root
(non-SMILES) identifier. Note that this error may not be detected until you try to write the TDT to its
database (see dt_thor_tdtput(), below).

There is no way to move a TDT directly from one database to another; to do so, you must fetch a TDT
from one database, create a TDT with the same identifier in the second database, then copy
information from the former to the latter. There are several reasons for this restriction, the most
important being that datatypes are a property of a database, so moving a TDT from one database to
another could change the meaning of the data (in the case where the datatypes are defined differently).

A second function used to create TDT objects is dt_thor_str2tdt(), which will convert a string (lexical)
representation of a TDT into an object. Some of the protection afforded by dt_thor_tdtget() is
bypassed by dt_thor_str2tdt(): You can choose to merge the data in the string with existing data or to
ignore data in the database. The latter strategy is useful when re-loading a database from a "dump"
(e.g. when there is certain to be no conflict between incoming data and existing data) as it is
significantly faster, but should not be used in general. Some additional protection is provided by the
"timestamp" mechanism described below.

If record locking is enabled, fetching a "writeable" TDT also locks the TDT -- it gives the client who
fetched the TDT exclusive write access until the TDT is explicitely unlocked. For a complete
discussion, see the section on record locking in the Databases chapter.

17.2.2 Destroying Datatrees and Datatree Objects

There are two distinct operations that, at first glance, might seem similar. Both get rid of TDTs, but in
very different ways:

dt_dealloc(tdt) deallocates a TDT object from the client program's memory, but does
not affect the database at all (in particular, the TDT object can be re-created by
re-reading it from the database).

dt_thor_tdtremove(tdt) removes a TDT from the database, but does not
affect a TDT object that might represent that same TDT (in particular, if the TDT
object exists, it is unaffected and can be written back to the database even though it
was deleted from the database.

It is important to remember that these operations are entirely separate.

17.2.3 The Datatree Memory

Every TDT object that you create becomes a child object of its database (all functions that create
TDTs have a database as their first parameter). Thus, THOR remembers each TDT object until it is
explicitly deallocated or the database is closed.

Daylight Toolkit Programmers' Guide

17.2.1 Creating Datatree Objects 76

Furthermore, THOR goes to some trouble to prevent the creation of two TDT objects with the same
root identifier. If, for example, you try to read a TDT from a database using dt_thor_tdtget(), THOR
will first check all of the child objects of the database to see if it already has that TDT; if so, you will
get the existing TDT rather than a new one. The reason for this behavior is, once again, to prevent the
accidental loss of data. You rarely want two TDT objects that represent the same actual TDT, as this
would inevitably lead to one's modifications overwriting the other's.

If you have a TDT object that you suspect needs "refreshing" (i.e. to be re-read from the database)
because it is out of date (see "Timestamps" below), it is necessary to deallocate the TDT before
invoking dt_thor_tdtget(). As long as your copy of a particular TDT object exists, THOR will not
re-read it from the database.

The function dt_thor_str2tdt() allows you to circumvent some of the protection afforded by
dt_thor_tdtget(). Using it, you can create a TDT for an identifier that already has been fetched from
the database, resulting in two object for the same main topic. Clearly this is a situation to be avoided.

17.2.4 Writing TDTs to a Database

The functions dt_thor_tdtput() and dt_thor_tdtput_raw() write a TDT or string to a database,
respectively. Note that writing doesn't happen automatically when you modify a TDT object. That is,
modifying a TDT object has no effect on the original data in the database: you can discard the TDT
object if you like and the original data will be unaltered. Only when you invoke one of the two
aforementioned functions is the database actually altered.

A write operation can be affected record locking. For a complete discussion, see the section on record
locking in the Databases chapter.

17.2.5 Timestamps

The first time you write a TDT to a database, a timestamp is automatically added to it by the THOR
server. On each subsequent write of a TDT, the server checks its timestamp to insure that it agrees
with the one in the database. If the two match, then all is ok. But if they don't, the assumption is that
some problem has occurred.. Possible causes for this situation include:

Two clients could have retrieved the same TDT and modified it. The first client wrote it back
successfully, causing the timestamp to change; the second client encountered an error as it
attempted to write its version of the TDT.

◊

One client managed to create two versions of the same TDT. This is always due to the use of
dt_thor_str2tdt(); the pitfalls of this function are outlined in its description below.

◊

A client used dt_thor_str2tdt() to create a TDT for an identifier that was already present in the
database. TDTs created this way have a bogus timestamp of "eons ago", so they always
appear to be out of data compared to existing data.

◊

Timestamps are intended to serve as a partial protection against inadvertently overwriting data. The
only way to circumvent the protection they provide is with a "forced write" of data (see
dt_thor_tdtput()).

17.2.6 Merging Datatrees

As noted above, THOR detects an error when two clients attempt to modify a single TDT
simultaneously. Timestamps will normally prevent one client from unknowingly erasing the changes
made by the other client. But merely preventing the second client from writing its data doesn't solve

Daylight Toolkit Programmers' Guide

17.2.3 The Datatree Memory 77

the problem, since presumably the second client's data are important too.

To solve this problem, and to provide a mechanism for merging two databases into one, THOR
provides a TDT merge operation. "Merging" is the process of identifying the set of unique dataitems
from two TDTs and producing a single TDT from that unique set.

There are several points at which you can merge datatrees. First, when creating a TDT from its lexical
(string) representation (dt_thor_str2tdt()), you can choose to merge the data from the string with any
existing data as the TDT is created. Second, a TDT can be merged as it is being written to the
database (dt_thor_tdtput()). And third, two TDTs can be merged into one at any time
(dt_thor_tdtmerge()).

Merging is mostly useful when adding new dataitems to a TDT; it has unpredictable behavior when
dataitems are deleted or modified. Consider the following examples:

Two clients simultaneously read a TDT, and each adds one new dataitem to it. If these clients
use the "merge" operation as they write the data, the resulting TDT will contain all of the
original data (which was common to both client's version of the TDT) plus the two new
dataitems (one from each TDT). It will be exactly as though one client had added both new
dataitems, which is what we desired.

◊

Two clients simultaneously read a TDT, and each deletes a different dataitem. The first client
writes its TDT out without trouble. But when the second client writes (with merging) its
version of the TDT, the TDT will be restored to its original form, since the dataitem each
client deleted still appears in the other's version of the TDT (i.e. the union of the two smaller
sets is the original set). This is not what we desired.

◊

A single client reads a TDT, modifies one datafield, then uses the "merge" operation when
writing it back to the database. Since the modified dataitem is no longer identical to the
original, both versions of the data (the original and the modified) appear in the database. This
is probably not what we desired (when modifying a dataitem, it is usually because it is wrong,
and we want to overwrite the original data rather than merging the old with the new).

◊

These examples should illustrate both the uses and the pitfalls of the merge operation. To briefly
summarize, merging is primarily useful when you are adding data to a database, or when you are
merging data from two or more databases into a single database. It is almost never useful when you
are changing or deleting data.

17.2.7 Cross-Referencing

One of THOR's most important capabilities is that it can know a compound by many names
(identifiers), and it can retrieve the compound using any identifier that is known. THOR achieves this
by a cross-referencing mechanism: The identifier for each subtree of a SMILES-rooted TDT is stored
in a secondary cross-reference database. Given any known identifier, the SMILES for all TDTs in
which that identifier appears can be retrieved with a single access to the secondary database. (Recall
from the THOR section of the Daylight Thoery Manual that a particular identifier may appear in
several TDTs).

Cross-referencing is done automatically by the THOR server; you can not directly create cross
references. Each time you write a TDT to its database, the server examines the TDT, extracts all of its
identifiers, and creates a cross reference entry to the SMILES that is the root of the TDT for each one.
Note that since non-SMILES- rooted TDTs aren't allowed to have subtrees, there is never a need to
cross-reference an identifier to anything but a SMILES (for example, there will never be a
cross-reference between a CAS number and a Wisswesser Line Notation).

Daylight Toolkit Programmers' Guide

17.2.6 Merging Datatrees 78

The function dt_thor_xrefget() is the mechanism by which cross- reference information is retrieved. It
returns a sequence of string objects, each containing a SMILES.

17.2.8 Functions on TDT Objects

dt_thor_tdtget(Handle parent, Handle dt, string id, boolean
writeable, RETURN boolean isnew) => tdt

Gets or creates a THOR Data Tree (TDT) object from the object parent. The TDT's root
identifier will be the identifier/datatype represented by id and dt, respectively, with id
standardized according to the specifications in the datatype object dt.

The "parent" object can be either a database, or can be the root of a TDT. In the former case,
the TDT is retrieved from the database and is a "root" TDT. In the latter case, a subtree is
retrieved from an existing TDT object.

The parameter writeable indicates whether modifications to the TDT object are to be
allowed. If the database is open read-only, then writeable must be FALSE. For a database
open with "write" permission, you can choose to retrieve a TDT as "read-only". When
record-locking is in effect (see Record Locking), this also controls whether a record is locked
or not: Any TDT that is retrieved with writeable TRUE is automatically locked for
exclusive access.

The parameter writeable also controls whether a new TDT can be created: If writeable is
FALSE and the requested TDT is not in the parent, no TDT object is created and the function
returns NULL_OB. If writeable is TRUE and the TDT doesn't exist, a new TDT object is
created representing a TDT that is not yet in the database.

dt_thor_xrefget(Handle database, Handle datatype, string id, RETURN
int iserror) => sequence

Gets a cross-reference sequence from a database, or NULL_OB if the identifier doesn't appear
in any SMILES-rooted TDT or if an error is detected. If NULL_OB is returned, the return
parameter iserror is TRUE if it was due to an error.

A cross-reference sequence contains a set of string objects. The first string object in the
sequence contains the original identifier that you asked about. The second through last string
objects each contain the SMILES of a TDT in which the specified identifier appears. For
example, a request with the datatype object for "$NAM" and id "dichloroethene" might yield
a sequence with three string objects, respectively containing "dichloroethene",
"ClC=CCl", and "ClC(Cl)=C".

dt_thor_tdtput(Handle tdt, boolean merge) => integer
Writes a TDT to its database (see the THOR-specific description of dt_parent(), below);
modifies the timestamp dataitem to reflect the current time.

If the THOR server detects that the TDT is out of date (its timestamp is older than that of the
same TDT in the database), then the parameter merge indicates what is to be done:

If merge is FALSE, the write simply fails. Note that this function's return value
(described below) clearly distinguishes between out-of-date timestamps and other
failures, so it is possible to recover gracefully from these unlikely collisions between
clients.

•

If merge is TRUE, the data from the database are merged with the data in TDT, the
timestamp of TDT is changed to the that of the data from the database, and the TDT

•

Daylight Toolkit Programmers' Guide

17.2.7 Cross-Referencing 79

is written to the database.
The function returns the following values:

1 == Successful write: The TDT object was written to the database, and no
problems were detected.

0 == Out-of-date timestamp: The timestamp of the TDT was out of date and
merge was FALSE, or another client wrote the TDT as the merge was in
progress. The TDT is not stored.

-1 == Error: Some problem was detected (invalid or revoked handle, database
is a virtual database, database is NULL_OB, error communicating with the
server, etc.). The TDT is probably not stored.

This function can also have some rather dramatic effects on the structure of the TDT itself,
including changing the very datatype and identifier of TDT's root. See the manual page for
details.

dt_thor_tdtremove(Handle tdt) => integer
Permanently removes (erases) a TDT from the database. Does not affect the TDT object (i.e.
it only affects data in the database, not the TDT object itself).

dt_thor_tdt2str(Handle tdt, boolean expand) => string
Converts the TDT object into its lexical (string) representation. If expand is FALSE,
indirect references in the datatree are not expanded; the string representation will contain the
"raw" indirect reference identifier. If expand is TRUE, indirect references are expanded.

dt_thor_str2tdt(Handle database, string tdtstr, boolean merge) =>
tdt

Converts tdtstr, the lexical (string) representation of a TDT, into a TDT object associated with
the database db.

If merge is FALSE, a TDT object representing only the data from tdtstr will be created.
Note that without the merge operation, it is possible to create a TDT object with a root
identifier and datatype that "conflicts" with one in the database or with an existing TDT
object (i.e. the same root identifier/datatype but with different data).

If merge is TRUE, a TDT object representing data from the database, merged with data from
the string, is created.

dt_thor_tdtmerge(Handle tdt1, Handle tdt2) => tdt1
Merge the dataitems from the TDT object tdt2 into the TDT object tdt1; deallocate the
object tdt2. When the merge is complete, tdt1 contains the set of all unique dataitems
from both tdt1 and tdt2, and its timestamp is the newer of tdt1 or tdt2.

dt_thor_tdtput_raw(Handle database, string tdtstr)
Puts a TDT string directly into the database without creating a TDT object, without any
normalization, and without any of the safeguards that go with normalizations. Very fast and
very dangerous.

This function is designed to be used only for re-loading data that was dumped (see
dt_stream(db, TYP_STRING)) from an existing Thor database that was created using the
exact same release of the software.

dt_thor_tdtrevise(Handle tdt) => boolean ok
Revises a TDT in preparation for storing it in a Thor database. This function is normally only
used internaly by dt_thor_tdtput(), but can be called directly if needed. See the description of

Daylight Toolkit Programmers' Guide

17.2.8 Functions on TDT Objects 80

dt_thor_tdtput() for an explanation of the changes that this causes.

17.3 Dataitem and Datafield Objects

Previous sections described how to open a database and how to get and store a TDT; this section
describes how to retrieve and modify the actual data contained in a TDT.

Most of the functions that access and modify a TDTs contents are of the "polymorphic" variety, so
there are only a few new functions to be introduced here. In particular, you access the dataitems
within a TDT and the datafields within a dataitem using dt_stream(), you access and change the value
of a datafield using the same functions that work on string objects, and you find the "verbose tags"
(the definitions for each datafield) using dt_tag(), dt_name(), dt_briefname(), dt_summary() and
dt_description(). See the datatypes chapter for more information.

The following C code fragment illustrates this idea:

 /* The outer loop is over all dataitems in the TDT. Note that
 it skips subtrees and their dataitems; we will only see the
 root identifier (1st dataitem) and the data attached to it.
 The inner loop is over the datafields of each dataitem */

 char *field, *label
 dt_Handle di_stream, di, df_stream, df;

 di_stream = dt_stream(tdt, TYP_DATAITEM);
 while ((di = dt_next(di_stream)) != NULL_OB) {
 df_stream = dt_stream(di, TYP_DATAFIELD)
 while ((df = dt_next(df_stream)) != NULL_OB) {
 field = dt_stringvalue(df);
 label = dt_info(df, strlen("name"), "name");
 /* do something, like print the datafield's label and value.*/
 }
 }

17.3.1 Functions on Dataitems and Datafields

dt_thor_alloc_dataitem(Handle tdt, Handle datatype) => Handle
dataitem

Allocates a new dataitem object in tdt. The dataitem is created with the number and types of
fields specified by datatype; the datafields initially contain empty strings (note that these
empty strings are not the invalid string -- they are valid strings with no characters in them).
Returns a handle to the dataitem, or NULL_OB if a problem is detected.

dt_datatype(Handle dataitem) => Handle datatype
Returns the datatype object associated with dataitem.

dt_dfnorm(Handle datafield, integer norm) => boolean isnorm

Tests the datafield against the given normalization; returns TRUE if that is one of the datafield's
normalizations. Normalizations are defined in the Toolkit's header files; for example:

dt_dfnorm(df, DY_THOR_BINARY) => TRUE if df is binary data
dt_dfnorm(df, DY_THOR_READONLY) => TRUE if df is read-only

dt_dfnormdata(Handle datafield, integer norm) => string normdata

Daylight Toolkit Programmers' Guide

17.3 Dataitem and Datafield Objects 81

If a normalization has extra data (i.e. REGEXP, INDIR, SMILES_NTUPLE), returns a string
describing that data. For example, if a datatype is defined as:

 $D_V_N|

Then the call dt_dfnormdata(df, DY_THOR_INDIRECT) would return "$I" when df was the
second datafield of a CLOGP dataitem.

dt_thor_raw_datafield(Handle datafield) => string fieldvalue
Returns the "raw" value of a datafield. Datafield's contents are normally accessed using
dt_stringvalue(), which automatically expands indirect data. This function is like
dt_stringvalue() except that it returns indirect datafields without expanding them. For
datafields that are not indirect, it is identical to dt_stringvalue(datafield).

dt_thor_moveitem(Handle moveh, Handle afterh) => boolean ok
Moves the object moveh from one place to another in the TDT; in particular, to after the
object afterh. There is no way to move an object to before the first object in a TDT, as this
would replace the TDT's identifier, nor is it possible to move the first object in a TDT (its root
identifier) somewhere else. The objects moveh and afterh must have the same root TDT
(although one or the other may be part of a subtree; see below).

There are four possible combinations of object types for objects moveh and afterh (where
"==" is shorthand for "is of type"):

1. moveh == TYP_DATAITEM, afterh == TYP_DATAITEM
This move is always legal; the dataitem moveh is moved so that it
follows afterh . The two dataitems may be in different subtrees or the
root tree to begin with; moveh ends up in the subtree of afterh (it is
re-parented).

2. moveh == TYP_DATATREE, afterh == TYP_DATATREE
This is legal if both moveh and afterh are subtrees; moveh is moved
so that it follows afterh.

3. moveh == TYP_DATATREE, afterh == TYP_DATAITEM
If afterh is a dataitem of the root of the tree, moveh becomes the first
subtree of the TDT. If afterh is a dataitem in a subtree, moveh is
moved to after the subtree that afterh is part of.

4. moveh == TYP_DATAITEM, afterh == TYP_DATATREE
This combination is never legal; it doesn't make sense.

Returns TRUE if the move is completed successfully; FALSE if errors are detected. If the
move is illegal, the TDT is unaffected. If the move is legal but fails, the TDT will probably be
corrupt (such failures are generally caused by corrupt TDTs being passed in; this almost never
happens).

18. Merlin Toolkit

18.1 Introduction

Previous chapters discussed those aspects of the Merlin Toolkit that are common with the THOR
Toolkit: servers and security, databases and datatypes. In this chapter, we will cover the
Merlin-specific capabilities of the Merlin Toolkit.

Daylight Toolkit Programmers' Guide

17.3.1 Functions on Dataitems and Datafields 82

Merlin uses a "spreadsheet" model to represent a database. This is discussed in greater detail in the
Daylight THOR-Merlin Administration Guide. Merlin has two objects, the hitlist and the column that
represent this view of the database. Two other concepts, the row and the cell, are also important, but
there are no row or cell objects in Merlin.

A column object represents a "column" of data from a database, i.e. one specific field from
each TDT in the database. A column is the "y axis" of the "spreadsheet" view of the database.

◊

A "row" is the "x axis" of the spreadsheet view of the database; it is data from a single TDT.
There is no row object; it is just an idea we use to convey the workings of Merlin.

◊

A hitlist object represents an ordered set of rows from a database. That is, the object holds a
set of "hits" (rows) and a particular ordering of those rows. Various search operations affect
which rows belong in the hitlist, and various sort operations affect the order of the rows in the
hitlist.

◊

A "cell" is the data at the intersection of a row and a column. There is no cell object.◊

18.2 Tasks -- "Time Slicing"

Although Merlin is quite fast at searching and sorting, certain tasks can take a significant amount of
time. Since the server has to serve many clients, tasks that take a long time have to be "sliced" into
smaller time segments so that requests from various clients can be interleaved. This prevents any one
client from "hogging" the server for a long time. In addition, a client can abort a time-sliced task part
way through.

All sorting and searching Toolkit functions are time-sliced. These functions, and the function
dt_continue() (described below), have a "status" parameter indicating how the task is progressing:

DX_STATUS_IN_PROGRESS not finished, task in progress
DX_STATUS_DONE finished search, target found
DX_STATUS_NOT_FOUND finished search, target not found
DX_STATUS_ERROR error, operation not completed

The following three functions are used in conjunction with the searching and sorting functions (which
are described in detail below) to carry out time-sliced functions:

dt_continue(Handle server, RETURN integer status) ==> integer progress
Continues the current task in progress. Returns the progress on the task; dividing this value by
the value returned dt_done_when() will yield the fraction of the task that is completed. You
can only call this function when a task is in progress, e.g after a search or sort function has
returned a status of DX_STATUS_IN_PROGRESS.

dt_abort(Handle server) ==> integer ok
Aborts the current task. A server can only have one task in progress for any particular client,
so starting a second task (another search or sort) also has the effect of aborting the current
task.

dt_done_when(Handle serverh) ==> integer done_when
Indicates the "final progress" for dt_continue(); that is, the value of "progress" that will mean
the task is complete (where "progress" is the value dt_continue() returns).

A general algorithm for starting and completing a sort or search task is:

 Start the task; check the task's return status
 If return status is "in progress" then

Daylight Toolkit Programmers' Guide

18.1 Introduction 83

 done_when = dt_done_when(server)
 while (status is still "in progress")
 progress = dt_continue(server, status)
 report progress to the user
 endwhile
 endif

The following C code fragment illustrates this in more concrete terms:

 /*** Do the search ***/
 progress = dt_mer_similarselect(hitlist, col, searchtype, action, -1,
 &ret_status, strlen(smiles), smiles, limit,0.0,0.0);
 if (ret_status == DX_STATUS_IN_PROGRESS) {
 done_when = dt_done_when(server);
 while (ret_status == DX_STATUS_IN_PROGRESS) {
 printf("Similarity: (%d%%)\n", (100 * progress)/done_when);
 progress = dt_continue(server, &ret_status);
 }
 }

 /*** Let user know how it came out ***/
 if (ret_status == DX_STATUS_NOT_FOUND)
 printf("Target not found - hitlist unchanged\n");
 else if (ret_status != DX_STATUS_DONE) {
 printf("Error with similarity search:\n");
 printerrors(stdout, 0);
 }
 else
 printf("Done: %d hits in list\n", dt_mer_length(hitlist));

18.3 Querying for Capabilities

Merlin's set of capabilities includes several ways to sort data, search data, and otherwise examine and
modify hitlists. All of Merlin's capabilities are enumerated in the "include" files that come with the
Toolkit; however, it is some times desirable to design a user interface without "hard coding" this
information. That is, it might be desirable to ask the Toolkit at "run time" for its capabilities, and
build the user interface (menus, etc.) using the reported capabilities.

The Merlin Toolkit provides functions that allow you to ask the Merlin system for its capabilities. For
example, the sorting function take a "sort type" parameter that indicates how the data are to be sorted
(e.g. ASCII, numeric, etc.); using the "capabilities functions" described below, you can ask the server
how many types of sorts are available, ask for the "name" of each one, and ask which of these are
appropriate for the particular column being sorted. Using the information returned, the program can
present this information as a menu from which the user can select the sort-type desired.

The following "capability querying" functions are available:

dt_mer_action2name(Handle server, integer action)
dt_mer_function2name(Handle server, integer func)
dt_mer_search2name(Handle server, integer search)
dt_mer_similar2name(Handle server, integer similar)
dt_mer_sort2name(Handle server, integer sort)
dt_mer_subselect2name(Handle server, integer subselect)
dt_mer_superselect2name(Handle server, integer superselect)

Daylight Toolkit Programmers' Guide

18.2 Tasks -- "Time Slicing" 84

Each of the above functions returns a string containing a an English- language name for the
specified capability. If the capability is unknown (the parameter is out of range) or server is
not a server object, returns the invalid string.

dt_mer_nactions(Handle serverh)
dt_mer_nfunctions(Handle serverh)
dt_mer_nsearches(Handle serverh)
dt_mer_nsimilars(Handle serverh)
dt_mer_nsorts(Handle serverh)
dt_mer_nsubselects(Handle serverh)
dt_mer_nsuperselects(Handle serverh)

Each of the above functions returns an integer equal to the number of valid capabilities. If the
capability is unknown, or server is not a server object, returns -1.

The following C code fragment illustrates how one might use these functions to print a list of all legal
sorts:

 nsorts = dt_mer_nsorts(server);
 for (sort = 0; sort > nsorts; sort = sort + 1) {
 sort_name = dt_mer_sort2name(&alen,server,sort);
 fprintf(stdout, "%d. %.*s\n", sort, alen, sort_name);
 }

Two other capability-querying functions are used to help users select capabilities that are appropriate
for particular data:

dt_mer_sortapplies(Handle column, integer sort) ==> boolean applies
Returns TRUE if the specified sort can be applied to the specified column. Sorting methods
and the function dt_mer_sort() are discussed below.

dt_mer_funcapplies(Handle fieldtype, int func) ==> boolean applies
Returns TRUE if the specified function can be applied to create a column of the specified
field type. For example, you can't use DX_FUNC_STDDEV (standard deviation) on a
fieldtype that is not numeric. Column creation is discussed below.

18.4 Column Objects

A column object is defined by three properties:

Property Description

database The database (Merlin pool) which
is the column's parent object.

fieldtype
Defines which datatype and which
field within that datatype is to be
used to create the column

function Describes how to extract the particular
field from each TDT.

18.4.1 Column "Functions"

A single THOR datatree (TDT) can contain many occurrences of a particular datatype. For example, a
TDT might have dozens or hundreds of names for a compound, such as brand names for a drug.
Likewise, it could have many measurements of a particular physical property.

Daylight Toolkit Programmers' Guide

18.3 Querying for Capabilities 85

Merlin's "spreadsheet" model (rows and columns) requires that we somehow select from among the
multiple occurrences of a particular type of data to create "columns" of data. To do this, we introduce
the idea of a column-creation function. These functions provide various methods for choosing among
the various occurrences of a particular type of data in a TDT:

DX_FUNC_FIRST
Select the first occurrence of the specified field in the TDT. This is the most commonly used
function in column creation.

DX_FUNC_LAST
Select the last occurrence of the specified field in the TDT.

DX_FUNC_MIN
Select the lowest-valued occurrence of the specified field in the TDT. For numbers, this is the
lowest numerical value, using a simple "

DX_FUNC_MAX
Select the highest valued occurrence of the specified field in the TDT, as with
DX_FUNC_MIN, above, except using ">".

DX_FUNC_LONGEST
Selects the longest (where length is the number of characters in the string).

DX_FUNC_SHORTEST
Selects the shortest.

DX_FUNC_AVG
Creates a column of "derived data" containing the average of all occurrences of the specified
fieldtype in the row. If a particular row has no occurrences of the specified fieldtype, the cell
in the column will be "not available" (usually indicated by "~"). The fieldtype must be
numeric.

DX_FUNC_STDDEV
Creates a column of "derived data" containing the standard deviation of all occurrences of the
specified fieldtype in the row. If a particular row has one or zero occurrences of the specified
fieldtype, the cell in the column will be "not available". The fieldtype must be numeric.

DX_FUNC_COUNT
Creates a column of "derived data" containing the count of the specified fieldtype in each
row. That is, goes through the rows and sums the number of occurrences of the specified
fieldtype; the resulting sums become the column's contents.

DX_FUNC_ALL
Creates a column of "pseudo data" which in effect has all occurrences of the specified field
type in it. The column initially appears empty; when a search is performed, the entire row is
searched; if a field of the specified type is found that matches the search parameters, that field
becomes the cell's value. Note that this makes these columns behave somewhat strangely,
since their data changes with each search.

18.4.2 Creating Columns

dt_mer_alloc_column(Handle pool, Handle ftype, integer func) ==>
Handle col

Creates a column of data from the database pool, using the datafield specified by ftype and
the function func.

dt_mer_getnitems(Handle pool, Handle type) ==> integer nitems
If type is a datatype object, returns the number of dataitems in the pool that have the specified
datatype. If type is a fieldtype object, returns the number of datafields in the pool that have
the specified field type. (Particular implementations of the Merlin server may not be able to
report these two numbers separately. In such cases, the server may report the number of

Daylight Toolkit Programmers' Guide

18.4.1 Column "Functions" 86

dataitems when you request the number of datafields.)

18.4.3 Information about Columns

dt_mer_defaultsort(Handle column) ==> integer sort
Returns the index of the "most likely" sort type for the specified column. For numeric
columns, returns DX_SORT_NUM; for CAS numbers returns DX_SORT_CAS; for all other
sortable columns returns DX_SORT_ASC.

dt_mer_sortapplies(Handle column, integer sort) ==> boolean applies
Returns TRUE if the specified sort (a string object) can be applied to the column. For
example, you can't sort a numeric column by length, since length only applies to strings.

dt_mer_function(Handle column) ==> integer func
Returns the function that was used to create the column, or -1 if an error is detected.

18.4.4 Polymorphic Functions on Columns

Most (but not all) columns are a "shared resource" on the server: All clients that use a particular
column refer to the same actual data. In installations where particular data are frequently used, it is
possible to create "permanent" columns, using dt_hold(), that remain in the server's memory, thereby
improving startup performance for client programs. For example, you might want to create a
permanent SMILES column, a column of you company's ID number, and a column of a particular
physical property that all of you users need.

Note that columns of "derived" data, such as similarity columns and columns with the function
DX_FUNC_ALL, can't be shared among clients as their contents change with each search. It is not
useful to use dt_hold() on such columns.

dt_hold(Handle column, string thorpassword) ==> boolean ok
Marks the specified column "held", so that it will be retained in the Merlin server's memory
even when no clients are using it.

dt_isheld(Handle column) ==> boolean isheld
Returns TRUE if column is marked "hold".

dt_release(Handle database, string execpassword) ==> boolean ok
Marks the specified column "released" (not held), so that it will be removed from the Merlin
server's memory when the last client deallocates it.

As mentioned in the chapter on datatype objects, column objects respond to requests about datatype
and datafield properties. The following functions work when used with column objects; they are
described in more detail in the chapter on Datatype objects:

dt_datatype(Handle column) ==> Handle datatype
dt_fieldtype(Handle column) ==> Handle fieldtype
dt_dfnorm(Handle obj, int norm) ==> boolean isnorm
dt_dfnormdata(Handle obj, int norm) ==> string normdata
dt_name(Handle obj) ==> string name
dt_briefname(Handle obj) ==> string briefname
dt_summary(Handle obj) ==> string summary
dt_tag(Handle obj) ==> string tag
dt_description(Handle obj) ==> string description

Daylight Toolkit Programmers' Guide

18.4.2 Creating Columns 87

18.5 Hitlist Objects

A hitlist object represents an ordered set of rows from a Merlin database. Client programs typically have one
primary hitlist that is used for search and sort operations, and often have auxiliary hitlists for "save/restore"
and "undo" operations.

While it is possible to create as many hitlists as you like, you should remember that each one uses memory in
the server (4 bytes per row in the pool). In general you should use as few as will suffice for the task at hand.

Rows in a hitlist are identified by their index in the hitlist, typically referred to as "ihit" (index of the hit).

18.5.1 Creating Hitlists

dt_mer_alloc_hitlist(Handle database) ==> Handle hitlist
Creates a hitlist. The hitlist is initially "reset" -- it contains all rows in the pool in "native" order.

18.5.2 Retrieving Data: Cells

dt_mer_cellvalue(Handle column, Handle hitlist, integer ihit) ==> string cell
Returns the value of the "cell" -- the value from the ihit position of the hitlist in the specified
column. The string returned should be used or copied immediately; the Toolkit may reuse the buffer
that this function returns on the next call to the Merlin Toolkit.

dt_mer_getdata(Handle hitlist, int ihit, Handle ftype, int n) ==> string
data

Allows you to retrieve data without first creating a column: returns the nth occurrence of a specific
fieldtype in row ihit of hitlist. The parameter ftype is a fieldtype object, and indicates what type of
data is desired. It allows you to retrieve data (e.g. SMILES, conformation) whether or not you have a
column of that type.

18.6 Sorting

To sort data in Merlin, one specifies a hitlist/column pair, thus defining the cells whose data are to be sorted,
along with a sort method. The sort method specifies how the cells are to be compared to one another to
determine which is "lowest" and which is "highest". There is a variety of sort methods available, as follows:

DX_SORT_ASC
Sort the data using straight ASCII comparison. Note that in the ASCII character set,
all uppercase letters [A-Z] are less than all lowercase letters [a-z], so "Baker" will
come before "able". If one string is a prefix of another, the longer string is considered
to be greater than the shorter; thus "able-bodied" would come after "able".

DX_SORT_ANC
"Sort, no case" -- sort using straight ASCII comparison, but all lowercase characters
[a-z] are converted to their equivalent uppercase [A-Z] before the comparison is
made, thus eliminating case distinction. For example, "able" would come before
"Baker".

DX_SORT_ANW
"Sort, no whitespace" -- sort using straight ASCII comparison, but ignore
"whitespace" characters (space, tab, newline, and carriage- return -- ASCII 32, 7, 10,
and 13, respectively). That is, it is equivalent to first removing all whitespace from
the strings, then sorting by DX_SORT_ASC.

Daylight Toolkit Programmers' Guide

18.5 Hitlist Objects 88

DX_SORT_ANP
"Sort, no punctuation" -- sort using straight ASCII comparison, but ignore
punctuation characters. Punctuation characters are anything that is not alphanumeric
([A-Z], [a-z], and [0-9]). That is, it is equivalent to first removing all punctuation
from the strings, then sorting by DX_SORT_ASC.

DX_SORT_ANCP -- "Sort, no case, no punctuation"
DX_SORT_ANCW -- "Sort, no case, no whitespace"
DX_SORT_ANPW -- "Sort, no punctuation, no whitespace"
DX_SORT_ANCPW -- "Sort, no case, no punctuation, no
whitespace"

Each of these is a combination of sorts discussed previously.
DX_SORT_AAZ

"Sort, ASCII A-Z only" -- sort ignoring all characters except a-z and A-Z, and ignore
case distinction. That is, it is equivalent to removing all non-alphabetic characters
from the strings and converting all uppercase characters to their lowercase equivalent,
then sorting the data by DX_SORT_ASC.

DX_SORT_NUM
"Sort numerically" -- sort a column of numbers into ascending order.

DX_SORT_NAB
"Sort numerically by absolute value" -- sort a column of numbers into ascending
order by magnitude (ignore the sign of the numbers).

DX_SORT_CAS
"Sort CAS numbers" -- sort Chemical Abstracts numbers into ascending order.

DX_SORT_MFM
"Sort by molecular formula" -- sorts molecular formula. Compares each
element/number combination as a single "token", so that "C20" is greater than "C2N"
(an ASCII sort would put the digit "0" before the letter "N").

DX_SORT_LEN
"Sort by length" -- sorts ASCII data by length; short strings are "lower" than long
strings.

One function in the Merlin Toolkit handles all sort methods:

dt_mer_sort(Handle hitlist, Handle column, integer sortmethod,integer
direction, RETURN integer status) ==> progress

Begins a "sort task" (see Tasks - "Time Slicing", above). Those rows currently in hitlist are sorted
using the cells from column. The data are sorted into ascending or descending order according to
whether direction is DX_SORT_ASCENDING or DX_SORT_DESCENDING.

The status of the sort-task is returned in the parameter status. The function's return value is either
its progress on the task (see dt_done_when()), or -2 if an error is detected. If the hitlist is short enough
that the server can sort it in one time-slice, the value of status will be DX_STATUS_DONE, and no
task will be in progress on the server. Otherwise, the status will be DX_STATUS_IN_PROGRESS,
and dt_continue() is required to finish the task.

The Merlin server will attempt to choose the most efficient sort technique for the data in the specified
column. Whatever method is chosen, the following will be true:

The sort is stable. That is, if two cells are equal, the sort won't affect their relative positions in
the hitlist.

◊

Daylight Toolkit Programmers' Guide

18.6 Sorting 89

The worst-case time it takes to sort a hitlist will grow as N*log(N) time, where N is the length
of the hitlist. In some cases it is much faster than this.

◊

dt_mer_defaultsort(Handle column) ==> integer sortmethod
Returns the default sort method for the specified column. The "default" is simply the "most likely"
sort a user might choose; there is no real significance to the value this function returns. Returns -1 if
column is not a sortable datatype, or if it isn't a column object.

dt_mer_sortapplies(Handle column, integer sortmethod) ==> boolean applies
Returns TRUE if the column can be sorted with the specified sort type, and FALSE if not or if the
specified object is not a column object.

18.7 Searching

The Merlin system's most powerful feature is its ability to search a database in a variety of ways. There are
five different searching functions in the Merlin Toolkit, to perform string, numeric, similarity, sub- and
superstructure searches.

In spite of the variety of searches available, all of the searching functions share most of their parameters; they
all look something like the following prototype. We will describe these common parameters here is this
pseudo-function definition, and for each actual function only describe those parameters that are unique.

dt_mer_xxxsearch(Handle hitlist,
 Handle column,
 integer searchtype,
 integer action,
 integer find_next,
 RETURN integer status,
 ...other parameters) ==> integer progress

hitlist
Where the "hits" (the rows that meet the search criteria) will be placed. Depending on the
parameter action, it may also determine which rows are searched.

column
The data that are to be searched. In some cases, such as a similarity search or a column
created with DX_FUNC_ALL, the column's contents also change as a result of the search.

searchtype
Most searches have "submodes" -- for example, when searching for strings, one can choose to
ignore case, whitespace, and/or punctuation.

action
Specifies what is to be done with the search results. This is discussed in detail in the
following subsection, Actions.

find_next
If action is one of DX_ACTION_NEXT_HIT or DX_ACTION_NEXT_NONHIT, this
parameter specifies where in the hitlist the search is to begin. The search begins at the hit after
this value; to search from the hitlist's beginning, specify -1. To continue searching from a
previously-found hit, specify that hit's index (the value returned by the previous invocation of
the search function).

status
All searches become "tasks" on the server (see the section entitled Tasks -- "Time Slicing",
above). This return parameter indicates the status of the search task. If it is
DX_STATUS_IN_PROGRESS, the search is not complete, and dt_continue() is required to
continue the task. If it is DX_STATUS_DONE, the search is complete and the function's return
value is the hitlist's length, or for "find-next" actions, the hit's index in the hitlist. If it is

Daylight Toolkit Programmers' Guide

18.7 Searching 90

DX_STATUS_NOTFOUND, the search is complete but failed to find anything; the hitlist is
unchanged. If it is DX_STATUS_ERROR, an error was detected; the task is complete, and the
hitlist is unchanged.

progress
The return parameter for all search functions is their progress on the task. If status is
DX_STATUS_IN_PROGRESS, then the function dt_done_when() will return a number
which, when divided into progress, yields the fraction of the task that is completed. If status is
DX_STATUS_DONE, then progress is the hitlist's new length. If status is
DX_STATUS_NOT_FOUND, progress is not defined. If status is DX_STATUS_ERROR, the
progress is -2.

18.7.1 Actions

The rows that are to be searched in the pool, and how the results of a search are to be combined with the
original hitlist, are defined by an action. There are seven possible actions:

DX_ACTION_NEW_LIST
The original hitlist is discarded (cleared). All rows in the database are searched; all rows that meet the
search criteria are added to the hitlist.

DX_ACTION_ADD_HITS
All rows not on the original hitlist are searched; rows that meet the search criteria are added to the end
of the hitlist.

DX_ACTION_ADD_NONHITS
All rows not on the original hitlist are searched; rows that don't meet the search criteria are added to
the end of the hitlist.

DX_ACTION_DEL_HITS
The rows in the original hitlist are searched; rows the meet the search criteria are removed from the
hitlist.

DX_ACTION_DEL_NONHITS
The rows in the original hitlist are searched; rows that do not meet the search criteria are removed
from the hitlist.

DX_ACTION_NEXT_HIT
The rows in the original hitlist are searched; as soon as a row is found that meets the search criteria,
its hitlist index is returned. The hitlist is unchanged. The data in derived-data columns, such as
similarity and columns created using DX_FUNC_ALL, will be altered by the search even though the
hitlist is unchanged. The parameter find_next to the search functions (described above) indicates
where in the hitlist the search is to begin: The first row examined is find_next + 1.

DX_ACTION_NEXT_NONHIT
Like DX_ACTION_NEXT_HIT, but returns the first row that does not match the search criteria.

18.7.2 Parametric Searches

There are two types of parametric searches: string and numeric. Only one or the other applies, according to
whether the column is a numeric type or not (see dt_dfnorm()).

The parameters hitlist, column, action, find_next, status, and the return value progress are
described in the description of the pseudo-search function dt_mer_xxxsearch(), above.

dt_mer_strsearch(Handle hitlist,
 Handle column
 integer searchtype,
 integer action,

Daylight Toolkit Programmers' Guide

18.7.1 Actions 91

 integer find_next,
 RETURN integer status,
 string s1,
 string s2) ==> integer progress

Searches the specified column for string-based values s1 and/or s2 according to the parameter
searchtype as detailed in the dt_mer_strsearch() manual page.

dt_mer_numsearch(Handle hitlist
 Handle column
 integer action,
 integer find_next,
 RETURN integer ret_status,
 float low_limit,
 float high_limit) ==> integer progress

Searches the specified column for all numbers in the range low_limit to high_limit, inclusive.
There is no separate "exact match" search for numbers; for this case search with the two limits equal.

Note that that unlike the other search functions, this function has no searchtype parameter; there
is only one type of numeric search.

18.7.3 Structural Searches

There are three types of structural searches in the Merlin Toolkit: similarity, substructure and superstructure.
All structural searches typically make use of "outside" data -- data not in the specified column -- in that they
implicitly use the fingerprint data (datatype FP) in the database. If fingerprints are not available, structural
searches will work much more slowly.

dt_mer_similarselect(Handle hitlist
 Handle column
 integer similartype,
 integer action,
 integer find_next,
 RETURN integer ret_status,
 string smiles,
 float limit,
 float alpha,
 float beta) ==> integer progress

Searches for structures similar to the structure specified by the given SMILES string. Similarity
searches are unusual in that the column you specify is a derived-data column: the similarity for each
row is computed and stored in the column, then compared to limit to determine if the structure
meets the search criteria. Substructure searches also make implicit use of the "Fingerprint" (FP)
datatype to compute the similarity values; if a particular row doesn't have a fingerprint, its similarity
will be "not available".

The parameters hitlist, action, find_next, status, and the return value progress are
described above in the description of the pseudo-search-function dt_mer_xxxsearch(), above.
The parameter column is as described in dt_mer_xxxsearch(), but additionally it must be a
column of the pseudo-datatype SIMILARITY. The parameter similartype can be either
DX_SIMILAR_TANIMOTO or DX_SIMILAR_EUCLIDIAN

dt_mer_subselect(Handle hitlist,
 Handle column,
 integer searchtype,
 integer action,

Daylight Toolkit Programmers' Guide

18.7.2 Parametric Searches 92

 integer find_next,
 RETURN integer status,
 string smiles) ==> integer progress

Searches for substructures of smiles. The parameter searchtype is essentially "reserved" for future
use -- DX_SUBSTRUCT_SMILES is presently the only allowed value.

The parameters hitlist, column, action, find_next, status, and the return value
progress are described above in the description of the pseudo-search-function
dt_mer_xxxsearch(), above.

dt_mer_superselect(Handle hitlist,
 Handle column,
 integer searchtype,
 integer action,
 integer find_next,
 RETURN integer ret_status,
 string smiles) ==> integer progress

Searches for superstructures of smiles. The interpretation of smiles depends on the searchtype
parameter, as follows:

search_type == DX_SUPER_SMILES
The parameter smiles is interpreted as a SMILES string. Using SMILES, one can specify
"ordinary" substructures -- substructures that have exactly-specified atoms and bonds (i.e. no
SMARTS expressions).

search_type == DX_SUPER_SMARTS
The parameter smiles is interpreted as a SMARTS string. Using SMARTS, one can specify
substructures that have expressions for atoms and bonds.

search_type == DX_SUPER_SMILESPART
The parameter smiles is interpreted as a SMILES string. Using SMILES, one can specify
"ordinary" substructures -- substructures that have exactly-specified atoms and bonds (i.e. no
SMARTS expressions). This search type uses the special FPP<> dataitem, if available, for
screening. This search is used to rapidly find substructures within dot-separated components
of SMILES, typically applicable for databases of mixtures.

search_type == DX_SUPER_SMARTSPART
The parameter smiles is interpreted as a SMARTS string. Using SMARTS, one can specify
substructures that have expressions for atoms and bonds. This search type uses the special
FPP<> dataitem, if available, for screening. This search is used to rapidly find substructures
within dot-separated components of SMILES, typically applicable for databases of mixtures.

During a SMILES and SMARTS searches, implicit use is made of the "Fingerprint" datatype for
screening purposes. If fingerprints are not available, the search may be considerably slower.

18.7.4 Program-Object searches The Merlin server's searching capabilities can be
extended via the use of user-written program objects.

The general topic is discussed in the chapter on program objects. "Attaching" a program object to a
merlin server is discussed in the merlinserver manual page. For a specific example of program
objects, see the "contrib" directory:

 $DY_ROOT/contrib/src/progob/merlinbintalk.c

A Merlin server can have several program objects attached to it. They are referenced by index, which
by convention in this manual we call iprogob. The following two functions tell you how many
program objects there are and their names:

Daylight Toolkit Programmers' Guide

18.7.3 Structural Searches 93

dt_mer_nprogobs(Handle server) ==> Integer N
Reports the number of program objects attached to the Merlin server.

dt_mer_progob2name(Handle server, Integer iprogob) ==> String name
Gets the name of the program object attached to the Merlin server. The parameter iprogob
indicates which program object, and ranges from 0 to N-1, where N is the number of program
objects reported by dt_mer_nprogobs(), above.

Currently, Merlin program objects work strictly with "binary" data, such as fingerprints, and produce
floating-point results, in a "Similarity" column. There are two tasks each Merlin program object can
perform:

Given a string (e.g. a SMILES) and some parameters, generate binary data from that string
(e.g. a fingerprint).

◊

Given binary data (e.g. a fingerprint), compare it to every row in a column of binary data and
return a result (e.g. similarity).

◊

More specifically, the following two functions perform these tasks:
dt_mer_progob_compute(Handle server,
 Integer iprogob,
 Handle string_object,
 Handle parameters) ==> Handle string

Sends the contents of "string_object", followed by the contents of "parameters" (a sequence
of string objects), to the program object attached to "server" indicated by "iprogob", and
returns a string object containing binary data computed by the program object. The binary
data are ASCII encoded; see dt_binary2ascii() for details.

dt_mer_progob_compare(Handle hitlist,
 Handle target_column,
 Handle result_column,
 Integer iprogob,
 Handle pattern_binary,
 Handle parameters,
 RETURN integer status) ==> progress

Uses a program object (see dt_mer_progob_compute(3)) to compare a binary datafield to the
contents of a column of binary data, and stores the results of the comparisons in a column of
numeric data. The binary data are ASCII encoded; see dt_binary2ascii() for details.

Program objects may require additional parameters to direct their computations and comparisons. For
example, a fingerprinting program's computation function might take parameters controlling the size
of the fingerprint and the maximum pathlength to follow in generating the fingerprint; a program
object that compares mass spectra might take parameters controlling the relative importance of
increasing mass. The above two functions both have parameter named, amazingly enough,
"parameters". These are sequence-of-strings objects that can take any arbitrary parameters that you
need to pass to the program objects. The parameters must be represented in string form (e.g. numeric
parameters must be represented in printed ASCII characters). The interpretation of these parameters is
strictly up to the program object; the Merlin server simply forwards them to the program object
without interpretation.

The program objects can also supply titles for these parameters. Two functions are provided for this
purpose:

dt_mer_progob_computeparams(dt_Handle server, dt_Integer iprogob)
==> Handle seq_of_strings

Asks a program object, via the Merlin server, to report the names and default values for the
parameters used by the function dt_mer_progob_compute(..., parameters).

Daylight Toolkit Programmers' Guide

18.7.4 Program-Object searches The Merlin server's searching capabilities can beextended via the use of user-written program objects.94

dt_mer_progob_compareparams(dt_Handle server, dt_Integer iprogob)
==> Handle seq_of_strings

Asks a program object, via the Merlin server, to report the names and default values for the
parameters used by the function dt_mer_progob_compare(..., parameters).

18.8 Other Hitlist Operations

dt_mer_clear(Handle hitlist) ==> boolean ok
Clears a hitlist. Returns the number of hits in the hitlist (i.e. zero), or -2 if an error is detected.

dt_mer_combinehitlists(Handle h1, Handle h2, int action) => integer
nhits

Combines two hitlists in the same manner as the search operations. That is, h1 is treated as
the original hitlist, h2 is treated as the result of a search; the two hitlists are combined using
action, and the result placed in h1.

dt_mer_hit2id(Handle hitlist, int ihit) ==> integer id
There are two ways of identifying a row in a pool:

hit index:
(Called "ihit") An index into a hitlist. This index is used for all operations on Merlin
hitlists.

row id
(Called "id") An arbitrary but unique integer that identifies a particular row. You can
ask for the id of a row in a hitlist, then use its id to find its position in another hitlist
or in a modified version of the original hitlist. An id has no other use. An id is
guaranteed to be invariant and unique over the life of a pool object.

Converts a row's hitlist index to its id. Returns the id, or -2 if an error is detected. A typical
use of the id is to find a row's id, perform a search or sort, then convert the id back to ihit,
the row's index in the modified hitlist. See dt_mer_id2hit(), below.

dt_mer_id2hit(Handle hitlist, int id) ==> integer ihit
Converts a row's "id" to its hitlist index, "ihit" (see dt_mer_hit2id(), above). Returns the row's
index ("ihit"), or -2 if an error is detected. It is an error if the specified row is not in the hitlist.

dt_mer_invert(Handle hitlist) ==> boolean ok
Inverts the hitlist: All hit rows become non-hits and all non-hit rows become hits. The current
order is lost; the new hits are in native order. Returns the number of hits in the resulting
hitlist, or -2 if an error is detected.

dt_mer_length(Handle hitlist) ==> integer length
Returns the number of hits in a hitlist.

dt_mer_mvbottom(Handle hitlist, int ihit) ==> integer nhits
Moves the specified hit to the end of the hitlist. Returns the (unaltered) hitlist length, or -2 if
an error is detected.

dt_mer_mvtop(Handle hitlist, int ihit) ==> integer nhits
Moves the specified hit to the top of the hitlist. Returns the (unaltered) hitlist length, or -2 if
an error is detected.

dt_mer_native(Handle hitlist) ==> integer nhits
Reorders the hitlist (without changing its contents) to "native" order. Returns the number of
hits (which is unchanged), or -2 if an error is detected.

"Native" order is essentially arbitrary. It sometimes corresponds to the order in which data are
loaded into a database, but it should not be assumed that this is the case. The only thing
guaranteed about "native" order is that it won't change during the life of the parent database
object (dt_parent(hitlist)).

dt_mer_reset(Handle hitlist) ==> integer nhits

Daylight Toolkit Programmers' Guide

18.8 Other Hitlist Operations 95

Resets and reorders a hitlist so that all rows in the pool are in it in "native" order. Returns the
number of hits in the hitlist, or -2 if an error is detected.

dt_mer_reverse(Handle hitlist) ==> integer nhits
Reverses the order of the hitlist, without changing its contents. Returns the (unaltered) hitlist
length, or -2 if an error is detected.

dt_mer_zapabove(Handle hitlist, integer ihit) ==> integer nhits
Deletes all hits above (but not including) the specified hitlist index ihit. If ihit is greater
than or equal to the number of hits, all hits are deleted. If ihit is zero or less, no hits are
deleted. Returns the hitlist's new length, or -2 if an error is detected.

dt_mer_zapbelow(Handle hitlist, integer ihit) ==> integer nhits
Deletes all hits below (but not including) the specified hitlist index ihit. If ihit is greater
than the number of hits, no hits are deleted. If ihit is less than zero, all hits are deleted.
Returns the hitlist's new length, or -2 if an error is detected.

dt_mer_zapna(Handle hitlist, Handle column) => integer nhits
Deletes rows from hitlist for which there is no data in column. Returns the hitlist's new
length, or -2 if an error is detected.

dt_mer_zapnonunique(Handle hitlist, Handle column) ==> integer nhits
Deletes all rows from hitlist which, in column, have the same value as the previous row in
the hitlist. Returns the hitlist's new length, or -2 if an error is detected.

18.9 Saving and Restoring Hitlists

It is often necessary to save a hitlist so that it may be restored for later use, or shared with other users.
For example, one might be interested in a particular subset of a database; one could use Merlin's
searching capabilities to make a hitlist consisting of that subset, then save it.

The Daylight system has no concept of "indices" or other arbitrary identifiers that might be used to
save a hitlist. One must use identifiers such as SMILES as the contents of a saved hitlist. Users and
programmers should be aware of the implications of this: If a particular row has no identifier loaded
in the Merlin Pool, it can't be saved in a hitlist -- there is no way to name it.

Hitlists are stored as TDT files. Each TDT is a "minature" version that contains only the identifier's
tag and the identifier. For example, the following hitlist might be from a database that has a number of
SMILES-rooted TDT, and a number of entries for which we have no structure, only a company ID
number:

 $SMI<Oc1ccccc1>|
 $SMI<OCc1ccccc1>|
 $CID<234-54A>|
 $SMI<Oc1c(O)cccc1>|
 $CIC<235-55B>|

Each row in a Merlin pool has a "root identifier" -- the root of the TDT for that row. If a pool's rows
are "split out" into subtree rows (i.e. the subtree identifiers have the _P in their datatype definition),
their root idntifier will be the subtree's root identifier. These root identifiers are used to store hitlists:

dt_mer_getroot(Handle hitlist, integer index) => string id
Returns the root identifier for the specified row, as a TDT string containing only the root
identifier's tag and the root identifier (e.g. "$TAG<ID>|").

dt_mer_sethits(Handle hitlist, Handle column, Handle sos) ==>
integer nset

Sets hits in a hitlist, using a sequence of identifiers and a column whose datatype is that of the

Daylight Toolkit Programmers' Guide

18.9 Saving and Restoring Hitlists 96

identifiers being restored.

The parameter sos is a sequence of string objects, each string-object of which should contain
a "$TAG<ID>|" string as described in dt_mer_getroot(), above, or a SMILES string (if the
first character of the string is not a "$", then it is assumed to be a SMILES; otherwise it is
assumed to be a TDT). Each identifier is added to the hitlist. Note that the hitlist is NOT
cleared before the additions begin; long lists of identifiers can be added by breaking them into
smaller groups. For efficiency, such groups should not be too small, say several hundred to
several thousand identifiers at a time.

Returns the number of hits in the sequence that were actually set. This can be different from
the sequence's length if one or more identifiers can't be found in the column, or if one or more
identifiers is duplicated, or was already in the hitlist. Returns -1 on error.

Note: As of release 4.33, only columns with datatype SMILES ($SMI) and the
pseudo-datatype "RowID" ($ROWID) will work with this function. $ROWID columns are by
far the most useful, since you can feed them a sequence-of-strings object with mixed
datatypes, i.e. one you got from dt_mer_getroot(), above.

19. Widgets

19.1 Introduction

The Daylight Widget Toolkit (tm) provides powerful set of functions for displaying chemical
information in a X-windows environment. Each "widget" is designed to handle a particular task that is
needed in typical programs for chemical-information processing The widgets in the Widget Toolkit
are:

Depict Widget: Displays depictions and, optionally allows a user to select one or more of
them. The Depict Widget is by far the most complex of the Daylight Widgets, as it has
several modes of operation.

◊

3D Widget: Displays conformations, allows the users to rotate the depictions with simple
mouse action using a "trackball" conceptual model.

◊

TDT Widget: Displays THOR Datatrees, provides editing capabilities so users can enter and
modify chemical information in a THOR database. Has several display options that allow
different levels of detail to be shown.

◊

Edgar Widget: Graphic-attribute editor. Allows users to change the colors and styles of
graphics, such as depictions and conformations, and to save the attributes in a personal
options file.

◊

File Widget: Allows the user to select a file. While finding the file of interest, users can
browse through the file system, selectively show only files of the desired type or all files,
order the display alphabetically or by name, and cancel the selection.

◊

Status Widget: A simple widget that graphically shows the progress of a long operations,
and provides a timeout and interactive-abort mechanisms.

◊

Message Widget: Displays errors and warnings returned by the Daylight Toolkit's error
functions. Allows users to scroll back through a series of errors and to clear the error display.

◊

The philosophy behind the design of the Daylight Widgets is quite different from other Daylight
Toolkits. Because the X Window programming environment is really only useable by C programs,
Daylight Widgets are only callable by C programs -- there is no FORTRAN or Pascal interface.

Daylight Toolkit Programmers' Guide

19. Widgets 97

Certain programming constructs that don't work well in mixed-language environments, such as
pointers to functions, are not used in the other Daylight Toolkits, but the Widget Toolkit makes heavy
use of them.

In addition, there is no concept of polymorphism or objects in the Widgets Toolkit. Each widget is
referred to by an identifier, but it is not a "Handle" in the sense used by the other Toolkits.

19.2 Widget Functional Interface

The Daylight Widgets Toolkit shares a key idea with the regular Daylight Toolkits: both use a
functional interface. That is, the Daylight Widget Toolkit has no externally-visible C structs,
"common blocks", or the like. When a widget is created, it is associated with an id, a simple integer.
This identifier is then used for all further operations on the widget: the widget is invoked, hidden,
displayed, and destroyed by passing this identifier to widget functions.

By design, the internal operation of all Daylight Widgets is hidden from the application program that
uses the widgets. For example, the Daylight GRINS widget is a very sophisticated widget that
provides users with a powerful tool for specifying molecules and depictions, but from the application
program's point of view, it is simply a source of depiction objects. That is, the operation of GRINS is
hidden; all the application has to do is invoke the GRINS widget and wait for a depiction to come
back.

The basis of the functional interface is the idea that a widget provides a "service" or "functionality"
that is independent of the particular implementation. For example, the GRINS widget task is to return
a depiction object to the calling program. How it does that is irrelevant to the calling program: a
"cheap imitation" GRINS widget might ask the use to enter a SMILES then use the Daylight SMILES
and Depict Toolkits to generate a depiction. This cheap imitation GRINS widget would meet the
functional specification, and the application program would be happy (the users, of course, would be
unhappy; the real GRINS widget is a powerful graphical input tool for molecular structure).

As another example of the functional nature of the Widgets, consider the Edgar Widget. When
invoked, it provides users with the ability to change the graphics (colors, line styles) being used
throughout a program, and to save changes in an options file. A user can, for example, change the
colors being used by the Depict Widget, change the "depth cue" colors used by the 3D widget, then
save these changes for use the next time the program is invoked. Yet with all of these capabilities, the
application program has essentially no interaction with the Edgar widget other than to invoke it.

We might summarize this idea by saying the programmer's view of widgets has nothing to do with
their operation, only their function.

19.3 Widget Callback Functions

Modern user interfaces, such as Motif and XView, use an event-driven architecture in which input
from users (keyboard and mouse activities) drive the application program. Specific actions, such as
opening a database, drawing a picture, or starting a database search, are "bound" to particular keys
and buttons; these actions are invoked by the event mechanism when the user presses the key or
mouse button.

To operate in this environment, Daylight Widgets use "callback" functions to return their results. For
example, the File Widget allows users to peruse the file system and select a file; when the user is done

Daylight Toolkit Programmers' Guide

19.1 Introduction 98

the selected file is returned to the application program by invoking an application-program-supplied
function that was given to the File Widget for this purpose.

19.4 Options

The Daylight Widgets make use of the Daylight "option manager". The option manager is not a
separate program (as the name might suggest), but rather is an integral part of the Daylight Toolkit. It
is not used by the other Daylight Toolkit products (except to verify licenses), but is heavily used by
Daylight Widgets.

Options specify the configurable behavior of widgets. They typically include the initial location of
each widget, the colors that are used for depictions, conformations, and so on, and fonts.

The Daylight Installation Guide contains more information about the options manager. The specific
options used by each widget are described on the manual page for each widget.

19.5 The Widgets

Below is an outline of each widget's capabilities. As the saying goes, "A picture is woth a thousand
words." In this case, it is difficult to express in words what is obvious to the eye. Most readers of this
document will have some aquaintance with the actual widgets, so we will not attempt to describe the
widget's operation in detail.

All widgets have a set of "standard" functions; most also have functions specific to the widget. Note
that the standard functions are not polymorphic like regular Daylight Toolkit functions; there are
actually separate functions for each widget, but they follow a standard naming convention. Each
widgth has the following, where "xxx" is replaced by the widget's name:

int dw_xxx_create(Frame parent);
Creates a widget as a child of XView Frame parent. The widget is initially invisible and has
nothing in it. A positive widget id is returned on success, 0 is returned on failure; this id is
used by all other widget functions. In general, any number of each type of widget can exist at
one time, but in most situations one of each type of widget is appropriate.

void dw_xxx_destroy(int id);
Destroys the widget .

void dw_xxx_hide(int id);
Makes the widget invisible.

void dw_xxx_redraw(int id);
Causes the widget to redraw its contents.

void dw_xxx_reset(int id);
Clears the visual and logical contents of the widget. May also reset the widget's label to its
default; see the specific description of each widget.

void dw_xxx_setlabel(int id, char *label);
Changes the widget's title.

void dw_xxx_show(int id);
Makes the widget visible. This function is not typically needed unlsee dw_xxx_hide() is used,
as the dw_xxx_invoke() functions automatically make the widget visible.

The following is a brief description of each widget.

Daylight Toolkit Programmers' Guide

19.3 Widget Callback Functions 99

19.5.1 3D or "Trackball" Widget

The "Trackball" widget, so called because of the visual model used, provides the ability to display a
single conformation. The widget can be thought of as "write-only" -- you pass it a conformation and it
does everything else; there is no callback function or return value.

19.5.2 Depict Widget

The depict widget is the most complex of the Daylight Widgets, as it has several modes of operation
and has a callback function to return results in several forms.

The typical sequence of operations on a Depict Widget are:

Create the widget◊
Add depictions to the widget. One or more objects, either depictions or sequence objects that
contain depictions, can be added.

◊

Invoke the widget using one of the modes described below. This makes it visible and causes
the depictions it contains to be displayed.

◊

The Depict Widget's modes are:

depict mode: Depictions are displayed only.◊
pickone mode: Depictions are displayed; the user can select one depiction in a "thoughtful"
manner, pressing an "OK" button when the selection is made. The depiction is returned via a
callback function.

◊

pickhot mode: Identical to the pickone mode except that the depiction is selected in a "hasty"
manner: the selection is made immediately when the depiction is selected rather than via an
"OK" button.

◊

pickmany mode: Depictions are displayed, and the user can select any number (including
zero) of the depictions. The "OK" button causes a sequence of depiction to be returned via the
callback function.

◊

19.5.3 Edgar Widget

The Edgar Widget (Edit Graphical Attribute Resources) is a color- picker utility which allows users to
asociate real properties (such as color, line style, and width) with functionally-defined graphic
attributes (such as background, border, bonds, and atom labels).

From the application program's point of view, the Edgar Widget is simply invoked; the Edgar Widget
returns no values.

19.5.4 File Widget

The file widget allows users to peruse the file system and select a file for some particular operation.
Its specification allows the application program great flexibility in selecting those files that are to be
shown to the user; for example, users could be shown only writeable files with a particular suffix.

The File Widget has two callback functions. The first is called when the user selects a file; the file
selected is passed to this callback function. The second callback function is a "filter" -- each file is
passed to this function before being shown to the user; the function returns 1 or 0 according to
whether the file is to be shown to the user or not.

Daylight Toolkit Programmers' Guide

19.5.1 3D or "Trackball" Widget 100

19.5.5 Font Utility

(Not a widget.) The font utility, dw_font(), is a utility that accesses the Daylight Options manager,
and creates an XView menu showing the optional fonts. It is provided as a convenience, and is used
internally by some of the Daylight Widgets.

19.5.6 GRINS Widget

The GRINS Widget is a powerful editor that allows fast specification of molecular structure using a
graphical molecule editor. GRINS was designed specifically for input tasks; it is not intended to
replace molecule editors that produce publication-quality pictures. Instead, GRINS is optimized for
fast entry of structure, and includes features such as templates and "parent" molecules that speed this
task.

The GRINS widget has one callback function, that is invoked with a depiction as its parameter when
the user selects "OK".

19.5.7 Help Widget

The Help Widget provides online user manuals, and allows context- dependent positioning in the
manuals. Help-Widget files are simply 80-character-wide text files containing section headings that
serve as the keys to context-sensitive invocation.

The Help Widget is invoked with a topic and key. For example, invoking it with the topic "thor" and
the key "CREATING DATABASES" would cause it to find the file "thor.hw", then look for the string
"CREATING DATABASES". The widget would be made visible with "thor.hw" as its contents,
positioned at the key of interest.

19.5.8 Message Widget

The Message Widget is a convenient was of allowing the user to browse the message sent to the error
facility provided by the Daylight Toolkit. It has no callback functions.

19.5.9 Status Widget

The Status Widget keeps the user informed of the progress of lengthy operations. It shows a graphical
"thermometer" display that fills up as the task proceeds, and shows a textual summary of the task's
progress, including an estimated time of completion.

In addition, the Status Widget has a timeout and abort facility. The application program can indicate a
time at which the process will be interrupted; at this point the user can choose to proceed, set another
timeout, or abort the operation. In addition, the user can at any point abort the operation.

The Status Widget is somewhat more difficult to use than the other widgets due to the design of
XView; a special main event loop must be written for XViews event processing. The Widget Toolkit
comes with an example illustrating how this is done.

19.5.10 TDT Widget

The TDT Widget provides for the display and editing of THOR Datatrees. It uses two callback
functions:

Daylight Toolkit Programmers' Guide

19.5.5 Font Utility 101

A "done" callback function, which is invoked when the user is finished editing the TDT and
presses "Save".

◊

A "datatypes" callback, which should return a sequence of the datatypes that are to be
available to the person editing the datatree.

◊

If the TDT supplied is from a read-only database, then the TDT widget automatically uses the
"Browse" mode; no editing is possible. Otherwise, the widget has add, delete, move, and modify
modes that allow data to be entered and modified.

19.6 Widget Programmer's Reference

The details of calling syntax, features, and functionality for programming the Widgets Toolkit are
described in a separate document, a set of UNIX-style " man pages". It is called the Daylight Widgets
Toolkit Reference.

20. HTTP Toolkit

Overview: This is the comprehensive reference for Daylight's HTTP Toolkit and is for use by
programmers. Covered topics include: 1) the Application Programmers Interface, 2) server & CGI
program structure, 3) the essential properties used to construct programs, 4) the entire set of
properties, and 5) example routines and program source code demonstrating use of the toolkit. What
is the HTTP Toolkit? The HTTP Toolkit is a web-based programmer library containing a
well-behaved set of entry points and conforms to specifications of RFC 1945 "Hypertext Transfer
Protocol -- HTTP/1.0" (available at http://www.ietf.org/rfc/rfc1945.txt). The HTTP Toolkit allows
you to receive requests to and send responses from Daylight tools over the web. The HTTP Toolkit is
a faster, simplier alternative to Common Gateway Interface (CGI) programming and Apache modules.
Why the HTTP Toolkit? The HTTP Toolkit was created because most people have a browser, such
as Internet Explorer or Netscape Navigator, so the client application is already installed! The HTTP
Toolkit leverages the ubiquitity of the internet by enabling programmers to serve information over the
web. Prerequisites The intended audience for this manual is programmers. A modest knowledge of
UNIX and the C programming language are key ingredients for understanding this manual.
Familiarity with UNIX commands and the ability to configure the UNIX environment is a must.
Experience in C programming is necessary because examples are illustrated using the C language.
Further, knowledge of HTTP headers and HTML syntax is helpful.

Daylight Software. You will need to download and install the software from
http://www.daylight.com/download/index.html and a license for the SMILES and HTTP Toolkits (for
licensing, email info@daylight.com). Source code for programs listed as figures in this manual are
available in the "Contrib" area of your Daylight installation ($DY_ROOT/contrib/src subdirectory).

Web Server Configuration. To use a HTTP Toolkit program as a CGI, your local web server will
need the LD_LIBRARY_PATH and DY_LICENSEDATA environment variables as well as
Daylight's Installation Guide. Organization The HTTP Toolkit is not difficult to understand, but you
must understand the Application Programmer Interface (API) and how properties control behavior
before you start programming.

Section 20.1. The Application Programmer Interface, defines the programmer library entry points,
arguments, and behavior.

Section 20.2. The Structure of Programs, illustrates how to use the API to create "run-once" and
"run-forever" programs.

Daylight Toolkit Programmers' Guide

19.5.10 TDT Widget 102

http://www.ietf.org/rfc/rfc1945.txt
http://cgi-spec.golux.com/draft-coar-cgi-v11-03.txt
http://www.daylight.com/download/index.html
mailto:info@daylight.com?subject=Daylight Evaluation License Request - SMILES and HTTP Toolkits

Section 20.3. The Essential Properties, shows the key ingredients of receiving a request and sending a
response and illustrates the classic example, "Hello World!".

Section 20.4. The Entire Set of Properties, lists a description of all properties and illustrates use of
POST data in the example, "Canonical SMILES".

Section 20.5. Working with the Toolkit, illustrates use of the toolkit with programming examples.
Conventions This manual uses the following typographical conventions:

Italics
Used for URLs, filenames, variables, new terms where they are defined, and emphasis

Constant width
property names, routine names, source code, computer output, and any literal text

Constant width bold
Used in examples to show commands or test that would be typed literally by you

ALL CAPS
Used for object names, environment variables and HTML tags Scope

Although the intended use of this toolkit is for deployment of Daylight tools, the HTTP Toolkit is a
general web server; any kind of information can be deployed using this tool.

20.1 The Application Programmer Interface

The Application Programmer Interface (API) implements the following objects:

HTTP Toolkit Object Classes
HTTP server object for encapsulation of the HyperText Transfer Protocol

TRANSFER message transfer object for handling requests & responses

and consists of the following entry points:

dt_alloc_http_server◊
dt_http_get◊
dt_http_put◊

That's it! The dt_alloc_http_server entry point is used to create a service on the web. The
dt_http_get and dt_http_put entry points are used to receive and respond to requests,
respectively.

20.1.1 Create a Service (dt_alloc_http_server)

The entry point for creating a web service is:

dt_Handle dt_alloc_http_server(dt_Integer port);

This allocates a new HTTP object. The port argument is a number in the range of 0 to 65535 and
identifies the process on the network. A port number of 0 means that the service behaves as a CGI. In
other words, it runs once and terminates. A port number greater than zero means the service listens on
that port and behaves as a server. In other words, it runs forever. The return value of this routine is the
handle of a new HTTP object or NULL_OB if an error is detected. See the manual page on

Daylight Toolkit Programmers' Guide

20. HTTP Toolkit 103

dt_alloc_http_server for more information.

20.1.2. Receive a Request (dt_http_get)

The entry point for receiving a request is:

dt_Handle dt_http_get(dt_Handle http);

This allocates a new TRANSFER object. The http argument is the HTTP object returned from
dt_alloc_http_server. The return value is the handle of a new TRANSFER object or
NULL_OB if no request is received or an error is detected. See the manual page on dt_http_get
for more information.

20.1.3 Send a Response (dt_http_put)

The entry point for sending a response is:

dt_Boolean dt_http_put(dt_Handle xfer);

This sends a response. The xfer argument is the TRANSFER object returned from dt_http_get.
The return value is TRUE if data is successfully transmitted, or FALSE if an error is detected. See the
manual page on dt_http_put for more information.

20.2 The Structure of Programs

A HTTP Toolkit program can be designed to function as a CGI service (run once) or a web service
(run forever). Also, a program can be designed to function as either one or the other. The following
sections contain source code written in the C language for each of the three programs.

The following examples test the API and default behavior of the Toolkit. The TRANSFER object, as
returned from dt_http_get, contain properties reflecting the request. Most noteworthy is the
Uniform Resource Locator (URL) property. Since the following examples do nothing with request
properties and the toolkit initializes the status code to 404 (meaning the URL is not found), we expect
each call to dt_http_put to produce a "404 Not Found" response. This behavior is a valid
HTTP service, although not useful beyond testing. Nonetheless, it is encouraged that you follow
details and reproduce results, so you can proceed with confidence into more complicated aspects of
the Toolkit.

20.2.1 Build a CGI

The following source code is an example of a main routine designed to function as a CGI:

Figure 20.2.1-1. Program Source Code: CGI

....1.

....2.

....3.

....4.

....5.

#include "dt_smiles.h"
#include "dt_http.h"

int main() {
 dt_Handle http, xfer;
 dt_Boolean stat;

Daylight Toolkit Programmers' Guide

20.1.1 Create a Service (dt_alloc_http_server) 104

....6.

....7.

....8.

....9.

....10.

....11.

....12.

....13.

....14.

....15.

....16.

....17.

....18.

/* create a service */
 http = dt_alloc_http_server(0);

/* receive a request */
 xfer = dt_http_get(http);

/* send a response */
 stat = dt_http_put(xfer);

 return !stat;
}

This is a bare bones program that creates a service, receives a request, and sends a response. The
Daylight include files are order-depenent (lines 1 & 2). The port argument (line 9) is 0 indicating a
CGI service. Nothing is done with the request (line 12), so the response (line 15) is the default
response ("404 Not Found"). The program is missing error checking and memory deallocation,
but that's okay, the Toolkit can handle it. Let's make a note to tidy it up later and move ahead for now.

This program serves as a fundamental test of HTTP Toolkit CGI service. To test CGI service, save the
above code as test-http-cgi.c and make the program (or you can get and make it from the
"Contrib" area of Daylight Software).

To compile on Red Hat Linux or SGI Irix systems:

cc -o test-http-cgi test-http-cgi.c -I$DY_ROOT/include -L$DY_ROOT/lib -ldt_http -ldt_smiles

On Sun Solaris systems:

cc -o test-http-cgi test-http-cgi.c -I$DY_ROOT/include -L$DY_ROOT/lib -ldt_http -ldt_smiles -lsocket

On Macintosh Darwin (OSX) systems:

cc -o test-http-cgi test-http-cgi.c -I$DY_ROOT/include -L$DY_ROOT/lib -ldt_http -ldt_smiles <<EOF
/System/Library/Frameworks/IOKit.framework/Versions/A/IOKit
/System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation
EOF

Now we've got our HTTP Toolkit CGI application compiled, let's use it. Execute the program with
end-of-file markers:

./test-http-cgi << EOF
GET / HTTP/1.0
EOF

You should see output HTML code that contains the following:

404 Not Found

The server cannot find the requested URL.

Daylight/4.81 Server at www.daylight.com Port 0

Daylight Toolkit Programmers' Guide

20.2.1 Build a CGI 105

The program received the request and responded "404 Not Found". In your output, the version
(4.81) and host machine (www.daylight.com) will vary and additional header lines (Date,
Server, and Content) may appear. If you're not sure if your program output is correct, compare it
to test-http-cgi.ref (see "Contrib" area of Daylight Software), which is an example of complete output
from the CGI program.

Before we move on, let revisit the CGI program source code and tidy it up:

Figure 20.2.1-2. Program Source Code: CGI (revised)

....1.

....2.

....3.

....4.

....5.

....6.

....7.

....8.

....9.

....10.

....11.

....12.

....13.

....14.

....15.

....16.

....17.

....18.

....19.

....20.

....21.

....22.

....23.

....24.

#include <stdio.h>
#include "dt_smiles.h"
#include "dt_http.h"

int main() {
 dt_Handle http, xfer;
 dt_Boolean stat = 1;

/* create a service */
 if (NULL_OB == (http = dt_alloc_http_server(0))) {
 fprintf(stderr, "dt_alloc_http_server failed\n");
 return 1;
 }

/* receive a request */
 if (NULL_OB != (xfer = dt_http_get(http))) {

/* send a response */
 stat = dt_http_put(xfer);
 dt_dealloc(xfer);
 }
 dt_dealloc(http);

 return !stat;
}

Compared to the original CGI program, the main portion (Figure 20.2.1-1, lines 9, 12 and 15) are
logically reworked (lines 10 through 18) to handle errors and memory deallocation. Now, let's move
on to a server application.

20.2.2. Build a Server

The following source code is an example of a main routine designed to function as a server.

Figure 20.2.2 Program Source Code: Server

....1.

....2.

....3.

....4.

#include <stdio.h>
#include "dt_smiles.h"
#include "dt_http.h"

int main(int argc, char **argv) {

Daylight Toolkit Programmers' Guide

20.2.2. Build a Server 106

....5.

....6.

....7.

....8.

....9.

....10.

....11.

....12.

....13.

....14.

....15.

....16.

....17.

....18.

....19.

....20.

....21.

....22.

....23.

....24.

....25.

....26.

....27.

....28.

....29.

....30.

....31.

....32.

....33.

....34.

 dt_Handle http, xfer;
 dt_Integer port = 0;

 if ((2 != argc) || (1 != sscanf(argv[1], "%d", &port))) {
 fprintf(stderr, "%s: missing integer argument\n", argv[0]);
 return 1;
 }
 if ((0 >= port) || (65535 < port)) {
 fprintf(stderr, "%s: port number out-of-range (1-65535)\n", argv[0]);
 return 1;
 }

/* create a service */
 if (NULL_OB == (http = dt_alloc_http_server(port))) {
 fprintf(stderr, "dt_alloc_http_server failed\n");
 return 1;
 }

 for (;;) {
/* receive a request */

 xfer = dt_http_get(http);

 if (NULL_OB != xfer) {
/* send a response */

 dt_http_put(xfer);
 dt_dealloc(xfer);
 }
 }
}

The essential difference between this code and the previous CGI example is that the calls to
dt_http_get and dt_http_put are within an infinite loop.

This program serves as a fundamental test of HTTP Toolkit web service. To test the web service, save
the above code as test-http-server.c and make the program (see the previous section, or the
"Contrib" area of Daylight Software):

To compile on Red Hat Linux or SGI Irix systems:

cc -o test-http-server test-http-server.c -I$DY_ROOT/include -L$DY_ROOT/lib -ldt_http -ldt_smiles

On Sun Solaris systems:

cc -o test-http-server test-http-server.c -I$DY_ROOT/include -L$DY_ROOT/lib -ldt_http -ldt_smiles -lsocket

On Macintosh Darwin (OSX) systems:

cc -o test-http-server test-http-server.c -I$DY_ROOT/include -L$DY_ROOT/lib -ldt_http -ldt_smiles <<EOF
/System/Library/Frameworks/IOKit.framework/Versions/A/IOKit
/System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation
EOF

Daylight Toolkit Programmers' Guide

20.2.2. Build a Server 107

Then, execute the program:

./test-http-server 1234

This runs the web service on port 1234. Point your browser to the machine running the service and
place a ":1234" at the end of the location, e.g., http://www.daylight.com:1234. This web service
produces the same output as the CGI, except for the port number.

Not Found

The requested URL / was not found on this server.

Daylight/4.81 Server at www.daylight.com Port 1234

In your output, the version (4.81) and host machine (www.daylight.com) will vary and
additional header lines (Date, Server, and Content) may appear. If you're not sure if your
program output is correct, compare it to test-http-server.ref (see "Contrib" area of Daylight Software),
which is an example of complete output from the server program.

20.2.3. Build a Dual-Purpose Server & CGI

The following source code is an example of a main routine designed to function as a server or a CGI.

Figure 20.2.3 Program Source Code: Dual-Purpose Server & CGI

....1.

....2.

....3.

....4.

....5.

....6.

....7.

....8.

....9.

....10.

....11.

....12.

....13.

....14.

....15.

....16.

....17.

....18.

....19.

....20.

....21.

....22.

....23.

....24.

....25.

#include <stdio.h>
#include "dt_smiles.h"
#include "dt_http.h"

int main(int argc, char **argv) {
 dt_Handle http, xfer;
 dt_Integer port = 0;
 dt_Boolean stat = 1;

 if ((2 == argc) && (1 != sscanf(argv[1], "%d", &port))) {
 fprintf(stderr, "%s: missing integer argument\n", argv[0]);
 return 1;
 }
 if ((0 > port) || (65535 < port)) {
 fprintf(stderr, "%s: port number out-of-range (0-65535)\n", argv[0]);
 return 1;
 }

/* create a service */
 if (NULL_OB == (http = dt_alloc_http_server(port))) {
 fprintf(stderr, "dt_alloc_http_server failed\n");
 return 1;
 }

 for (;;) {
/* receive a request */

 xfer = dt_http_get(http);

 if (NULL_OB != xfer) {
/* send a response */

Daylight Toolkit Programmers' Guide

20.2.3. Build a Dual-Purpose Server & CGI 108

....26.

....27.

....28.

....29.

....30.

....31.

....32.

....33.

....34.

....35.

....36.

....37.

....38.

....39.

....40.

....41.

 stat = dt_http_put(xfer);
 dt_dealloc(xfer);
 }

/* run-once for CGI */
 if (0 == port)
 break;
 }

 dt_dealloc(http);
 return !stat;
}

The essential difference between this code and the previous example is allowing port 0, breaking out
of the loop, and memory deallocation.

This program serves as a fundamental test of HTTP Toolkit web service and CGI service in one
program. To test the dual-purpose service, save the above code as test-http-server-cgi.c
and make the program (or see "Contrib" area of Daylight Software).

To compile on Red Hat Linux or SGI Irix systems:

cc -o test-http-server-cgi test-http-server-cgi.c -I$DY_ROOT/include -L$DY_ROOT/lib -ldt_http -ldt_smiles

On Sun Solaris systems:

cc -o test-http-server-cgi test-http-server-cgi.c -I$DY_ROOT/include -L$DY_ROOT/lib -ldt_http -ldt_smiles -lsocket

On Macintosh Darwin (OSX) systems:

cc -o test-http-server-cgi test-http-server-cgi.c -I$DY_ROOT/include -L$DY_ROOT/lib -ldt_http -ldt_smiles <<EOF
/System/Library/Frameworks/IOKit.framework/Versions/A/IOKit
/System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation
EOF

Now, you can execute the program as a CGI:

./test-http-server-cgi << EOF
GET / HTTP/1.0
EOF

and as a server:

./test-http-server-cgi 1234

You should get the same results as the CGI and server programs in Section 20.2.1 and Section 20.2.2.
If you've reproduced these results, you're on your way towards deployment of Daylight tools via a
web sevice. Now, let's get into the essential properties of receiving requests and sending responses.

Daylight Toolkit Programmers' Guide

20.2.3. Build a Dual-Purpose Server & CGI 109

20.3 The Essential Properties

In the Daylight Toolkit, "named properties" associate name/value pairs with objects. In the HTTP
Toolkit, named properties are used to get request and set response information associated with the
TRANSFER object. For example, the TRANSFER object has a named property called htt_path
reflecting the value of the requested URL. Let's suppose the URL is
http://www.daylight.com/dayhtml/. If so, the TRANSFER object's named property htt_path (a
property name) and would be "/dayhtml/" (its value).

20.3.1 Get a Request

The following lists the name, description, and datatype for the essential properties associated with
receiving requests:

Table 20.3.1. Essential Properties of a
Request

Name Description Datatype

htt_method request method dt_String

htt_path URL or path dt_String

htt_protocol protocol and version dt_String

htt_method is the request method, for example, "GET", "HEAD", or "POST". Other values
include "PUT", "DELETE", "LINK", and "UNLINK".

◊

htt_path is the URL or path, for example, http://www.daylight.com or /.◊
htt_protocol is the protocol and version, for example, "HTTP/1.0" or "HTTP/1.1".◊

To get the essential request properties:

Figure 20.3.1. Example Source Code: Get a Request Property

....1.

....2.

....3.

method = dt_string(&mlen, xfer, 10, "htt_method");
path = dt_string(&plen, xfer, 8, "htt_path");
protocol = dt_string(&rlen, xfer, 12, "htt_protocol");

The htt_method_id, htt_path, and htt_protocol are property names and method, path,
and protocol contain the property values. For more information, see the manual page for
dt_string.

20.3.2 Set a Response

The following table lists the name, description, and datatype for the essential properties associated
with sending responses.

Table 20.3.2. Essential Properties of a Response

Property Name Description Datatype

htt_code status code (200, 404, etc.) dt_Integer

Daylight Toolkit Programmers' Guide

20.3 The Essential Properties 110

htt_mime_type mime type (text/html, image/gif, etc.) dt_String

htt_content program data (HTML, GIF image, etc.) dt_String

htt_code is the response status code and is initialized to 404 (Not Found) when a
TRANSFER object is returned from dt_http_get. This property should be set to 200 for
response that are "OK".

◊

htt_mime_type is the MIME type of the content, for example "text/html" or "image/gif", and
is initialized to "text/html" when a TRANSFER object is returned from dt_http_get. The
syntax conforms to RFC 1521 "MIME (Multipurpose Internet Mail Extensions)" avavilable at
http://www.ietf.org/rfc/rfc1520.txt. When this property is not NULL, the value is used with
the "Content-Type" header field.

◊

htt_content is the content of the response with NULL as the initial value. This property is the
body of the response sent from the server to the client. When this property is not NULL, the
length in bytes of the content is used with the "Content-Length" header field.

◊

To set the essential response properties:

Figure 20.3.2. Example Source Code: Set a Response Property

....1.

....2.

....3.

....4.

....5.

....6.

....7.

....8.

....9.

....10.

dt_setinteger (xfer, 8, "htt_code", 200);
dt_setstring (xfer, 13, "htt_mime_type", 9, "text/html");
dt_setstring (xfer, 11, "htt_content", 12, "Hello World!");
dt_appendstring (xfer, 11, "htt_content", 12, "\n\nMethod: ");
dt_appendstring (xfer, 11, "htt_content", mlen, method);
dt_appendstring (xfer, 11, "htt_content", 11, "\nPath: ");
dt_appendstring (xfer, 11, "htt_content", plen, path);
dt_appendstring (xfer, 11, "htt_content", 11, "\nProtocol: ");
dt_appendstring (xfer, 11, "htt_content", rlen, protocol);
dt_appendstring (xfer, 11, "htt_content", 1, "\n");

For more information, see the manual page for dt_setinteger, dt_setstring and
dt_appendstring.

20.3.3 Processing the GET Method: Hello World!

Now we have the essential ingredients to build our first program that gets request and sets response
properties. Now, let's work through a program for the GET method. Consider the following "Hello
World!" program:

Figure 20.3.3. Program Source Code: Hello World!

....1.

....2.

....3.

....4.

....5.

....6.

....7.

....8.

....9.

#include <stdio.h>
#include "dt_smiles.h"
#include "dt_http.h"

static void my_handler(dt_Handle xfer);

int main(int argc, char **argv) {
 dt_Handle http, xfer;
 dt_Integer port = 0;
 dt_Boolean stat = 1;

Daylight Toolkit Programmers' Guide

20.3.2 Set a Response 111

http://www.ietf.org/rfc/rfc1520.txt

....10.

....11.

....12.

....13.

....14.

....15.

....16.

....17.

....18.

....19.

....20.

....21.

....22.

....23.

....24.

....25.

....26.

....27.

....28.

....29.

....30.

....31.

....32.

....33.

....34.

....35.

....36.

....37.

....38.

....39.

....40.

....41.

....42.

....43.

....44.

....45.

....46.

....47.

....48.

....49.

....50.

....51.

....52.

....53.

....54.

....55.

....56.

....57.

....58.

....59.

 if ((2 == argc) && (1 != sscanf(argv[1], "%d", &port))) {
 fprintf(stderr, "%s: missing integer argument\n", argv[0]);
 return 1;
 }
 if ((0 > port) || (65535 < port)) {
 fprintf(stderr, "%s: port number out-of-range (0-65535)\n", argv[0]);
 return 1;
 }

/* create a service */
 if (NULL_OB == (http = dt_alloc_http_server(port))) {
 fprintf(stderr, "dt_alloc_http_server failed\n");
 return 1;
 }

 for (;;) {
/* receive a request */

 xfer = dt_http_get(http);

 if (NULL_OB != xfer) {
/* process request, prepare response */

 my_handler(xfer);
/* send a response */

 stat = dt_http_put(xfer);
 dt_dealloc(xfer);
 }

/* run-once for CGI */
 if (0 == port)
 break;
 }

 dt_dealloc(http);
 return !stat;
}

static void my_handler(dt_Handle xfer) {
 dt_String method, path, protocol;
 dt_Integer mlen, plen, rlen;

 method = dt_string(&mlen, xfer, 10, "htt_method");
 path = dt_string(&plen, xfer, 8, "htt_path");
 protocol = dt_string(&rlen, xfer, 12, "htt_protocol");

 dt_setinteger (xfer, 8, "htt_code", 200);
 dt_setstring (xfer, 13, "htt_mime_type", 9, "text/html");
 dt_setstring (xfer, 11, "htt_content", 12, "Hello World!");
 dt_appendstring (xfer, 11, "htt_content", 12, "\n\nMethod: ");
 dt_appendstring (xfer, 11, "htt_content", mlen, method);
 dt_appendstring (xfer, 11, "htt_content", 11, "\nPath: ");
 dt_appendstring (xfer, 11, "htt_content", plen, path);
 dt_appendstring (xfer, 11, "htt_content", 11, "\nProtocol: ");
 dt_appendstring (xfer, 11, "htt_content", rlen, protocol);
 dt_appendstring (xfer, 11, "htt_content", 1, "\n");
}

Daylight Toolkit Programmers' Guide

20.3.3 Processing the GET Method: Hello World! 112

....60.

....61.

....62.

....63.

....64.

....65.

The only difference between this code and the previous "Dual-Purpose Server & CGI" example is the
htt_handler routine, which gets the method, path, and protocol request properties then sets the
return code, mime type, and data response properties.

This program serves as a test of HTTP Toolkit essential properties. To test the "Hello World!"
service, save the above code as http-hello-world.c and make the program (or see "Contrib"
area of Daylight Software).

To compile on Red Hat Linux or SGI Irix systems:

cc -o http-hello-world http-hello-world.c -I$DY_ROOT/include -L$DY_ROOT/lib -ldt_http -ldt_smiles

On Sun Solaris systems:

cc -o http-hello-world http-hello-world.c -I$DY_ROOT/include -L$DY_ROOT/lib -ldt_http -ldt_smiles -lsocket

On Macintosh Darwin (OSX) systems:

cc -o http-hello-world http-hello-world.c -I$DY_ROOT/include -L$DY_ROOT/lib -ldt_http -ldt_smiles <<EOF
/System/Library/Frameworks/IOKit.framework/Versions/A/IOKit
/System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation
EOF

Execute the program as a CGI:

./http-hello-world << EOF
GET / HTTP/1.0
EOF

You should see output HTML code:

Hello World!

Method: GET
Path: /
Protocol: HTTP/1.0

The program received the request, got the URL path and responded "Hello World!" with the
request's properties appended to it. If you're not sure if your program output is correct, compare it to
http-hello-world.ref (see "Contrib" area of Daylight Software), which contains the complete output
from the program.

We've covered the essential properties and worked through a program for the GET method. Now, let's
cover the entire set of HTTP Toolkit properties.

Daylight Toolkit Programmers' Guide

20.3.3 Processing the GET Method: Hello World! 113

20.4. The Entire Set of Properties

Properties are organized by two categories:

Read-Only◊
Read-Write◊

Each category is grouped into two subcategories:

CGI/Server◊
Request/Response◊

CGI/Server properties are associated to the HTTP object. Request/Response properties are associated
with the TRANSFER object.

20.4.1. Read-Only Properties of a CGI/Server

Each of the following properties are set when the HTTP server is allocated and do not change, except
for htt_status, which changes with each request. The following table lists the named property,
description, and datatype for the read-only properties associated with a CGI/Server.

Table 20.4.1. Read-Only Properties of a CGI/Server

Name Description Datatype

htt_date HTTP object allocation date & time dt_String

htt_status service state dt_Integer

htt_port communication endpoint number dt_Integer

htt_host local host name dt_String

htt_lips local host IP address dt_String

htt_date is the date & time of HTTP object allocation, for example, Mon, 02 Dec 2002
07:40:03 GMT. The format conforms to RFC 822 "Standard for the Format of ARPA Internet
Text Messages" and RPC 1123 "Requirements for Internet Hosts -- Application and Support"
and avavilable at http://www.ietf.org/rfc/rfc822.txt and http://www.ietf.org/rfc/rfc1123.txt.

◊

htt_status is the state of the HTTP service when a TRANSFER object is returned from
dt_http_get and one of following values:

DX_HTT_OK - a request has been received. The TRANSFER object will be equal to
NULL_OB if the request was processed internally. Otherwise, the TRANSFER object will be
a valid object for processing.

DX_HTT_TIMEOUT - a request has not been received. The TRANSFER object will be equal
to NULL_OB.

DX_HTT_ERROR - an error condition exists. The TRANSFER object will be equal to
NULL_OB. Use dt_errors to access error information.

DX_HTT_DONE - the same as DX_HTT_OK and also indicates that the service has
completed. This status is useful for breaking a CGI service from a dual-purpose Server/CGI

◊

Daylight Toolkit Programmers' Guide

20.4. The Entire Set of Properties 114

http://www.ietf.org/rfc/rfc822.txt
http://www.ietf.org/rfc/rfc1123.txt

loop. Calling dt_http_get again will result in an error.
htt_port is the port number on which the service is listening. This value is equal to the
argument passed to dt_alloc_http_server. Valid values are 0 to 65535 inclusive. Port
0 is interpreted as standard input and causes the service to behave as a CGI.

◊

htt_host is the name of the local host as viewed from the server using the uname system call,
for example, www.daylight.com.

◊

htt_lips is the IP address of the local host as viewed from the server using gethostbyaddr
system call, for example, 207.225.60.130.

◊

20.4.2 Read-Write Properties of a CGI/Server

Each of the following properties can be set anytime after a HTTP server object is allocated and affects
the behavior of dt_http_get. The following table lists the named property, description, datatype,
and default value for the read-write properties associated with a CGI/Server.

Table 20.4.2. Read-Write Properties of a CGI/Server

Name Description Datatype Default

htt_access_log enable logging of processed requests dt_Boolean FALSE

htt_method_id request method identifiers allowed dt_Integer DX_HTT_METHOD_ALL

htt_timeout_ms time to listen for a request dt_Integer 5000

htt_access_log is a boolean to indicate logging of processed requests. When TRUE,
successful responses will be written to the error queue at the DX_ERR_NOTE level.
Applications should process the queue per request. Valid values for this propery are TRUE
and FALSE.

◊

htt_method_id is a bitwise OR of request method identifiers that are implemented by the
service. If a request method received within a call to dt_http_get is not implemented, the
toolkit will internally process the request with a "501 Not Implemented" response. This
is useful for denying unwanted methods within the toolkit. Valid values for this property are:

DX_HTT_METHOD_HEAD - the service implements the request method HEAD.

DX_HTT_METHOD_GET - the service implements the request method GET.

DX_HTT_METHOD_POST - the service implements the request method POST.

DX_HTT_METHOD_ALL - a bitwise OR of all of the above method identifiers.

DX_HTT_METHOD_ANY - disables toolkit internal processing of unimplemented requests.

◊

htt_timeout_ms is the time in milliseconds the service polls the listening port for a request
by using the select system call. This value determines how long a call to dt_http_get
will wait before returning NULL_OB and setting the htt_status property to
DX_HTT_TIMEOUT.

◊

Daylight Toolkit Programmers' Guide

20.4.1. Read-Only Properties of a CGI/Server 115

20.4.3 Read-Only Properties of a Request

The following table lists the named property, description, and datatype for the read-only properties
associated with a request/response.

Table 20.4.3. Read-Only Properties of a Request

Name Description (HTTP header field) Datatype

htt_agent software information (User-Agent) dt_String

htt_authorize username & password (Authorization) dt_String

htt_from user email address (From) dt_String

htt_method request method dt_String

htt_method_id method identifier dt_Integer

htt_path URL or path dt_String

htt_post POST field & value pairs dt_Handle

htt_protocol protocol and version dt_String

htt_rawhead original HEAD data dt_String

htt_rawpost original POST data dt_String

htt_recv_ prefix for additional headers dt_String

htt_referer referral URL (Referer) dt_String

htt_rips remote host IP address dt_String

htt_since date condition (If-Modified-Since) dt_String

htt_agent is the information about the software used to make the request, for example,
"Mozilla/4.78 [en] (X11; U; Linux 2.4.7-10 i686)"

◊

htt_authorize is the username & password used to authorize a request.◊
htt_from is the email address of the user.◊
htt_method is the request method, for example, "GET", "HEAD", or "POST". Other values
include "PUT", "DELETE", "LINK", and "UNLINK".

◊

htt_method_id is the request method identifier of the request. Valid values for this property
are:

DX_HTT_METHOD_HEAD - the request method is HEAD.

DX_HTT_METHOD_GET - the request method is GET.

DX_HTT_METHOD_POST - the request method is POST.

DX_HTT_METHOD_NONE - the request method is none of the above implemented
methods. In this case, the request method can be determined using the htt_method
property.

◊

htt_path is the URL or path, for example, http://www.daylight.com or /.◊

Daylight Toolkit Programmers' Guide

20.4.3 Read-Only Properties of a Request 116

htt_post contains the request posts field/value pairs stored as a handle to a sequence of string
objects. Each string object represents one header line from the request. The header field name
is the string value of the string object and the header field value is the value of the "htt_value"
property of the string object. See the example on how to get a POST value below.

◊

htt_protocol is the protocol and version, for example, "HTTP/1.0" or "HTTP/1.1".◊
htt_rawhead is the original HEAD portion of the data request. This string contains line
delimiters (usually \r\n, \n, or \r) and ends with a blank line.

◊

htt_rawpost is the original POST portion of the data request. This string is NULL for
methods other than POST.

◊

htt_recv_ is the property name prefix for receiving unimplemented request headers and have
no predefined property name. For such headers, this prefix is is concatinated with the header
name to construct a property to store the header value. For example, the "Cookie" header is
not implemented, so when a "Cookie" header is received, the htt_recv_Cookie property
will contain the "Cookie" header value. In this way, the toolkit can support any request header
information. For information on cookies, see RFC 2965 "HTTP State Management
Mechanism" at http://www.ietf.org/rfc/rfc2965.txt.

◊

htt_referer is the URL of the referring resource.◊
htt_rips is the IP address of the remote host as viewed from the server using the
accept(3socket) system call. If the service is a CGI, the REMOTE_ADDR environment
variable is used.

◊

htt_since is the conditional date of which the request. The format is the same as the
htt_date property. If the resource is older than this date, the resource is not requested.

◊

The following source code shows how to get the value of the POST field named "smiles":

Figure 20.4.3. Example Source Code: Get POST Data

....1.

....2.

....3.

....4.

....5.

....6.

....7.

....8.

....9.

....10.

....11.

....12.

....13.

....14.

....15.

....16.

....17.

....18.

....19.

....20.

....21.

....22.

....23.

/* du_http_post - return the string object of a POST named property
** return NULL_OB if the name is not found
*/
dt_Handle du_http_post(dt_Handle xfer, dt_Integer plen, dt_String pname) {
 dt_Handle sequence, string;
 dt_String propname;

/* get property */
 sequence = dt_handle(xfer, 8, "htt_post");

/* loop over sequence, get strings */
 while (NULL_OB != (string = dt_next(sequence))) {

/* get propname */
 propname = dt_stringvalue(&plen, string);

/* check for match */
 if (0 == strncmp(propname, pname, plen))

/* return string value */
 return string;
 }

/* not found */
 return NULL_OB;
}

Daylight Toolkit Programmers' Guide

20.4.3 Read-Only Properties of a Request 117

http://www.ietf.org/rfc/rfc2965.txt

For more information, see dt_handle, dt_next, dt_stringvalue, and dt_string.

20.4.4 Read-Write Properties of a Response

The following table lists the named property, description, datatype, and default value for the
read-write properties associated with a request/response:

Table 20.4.4. Read-Write Properties of a Response

Name Description (HTTP header field in parenthesis) Datatype Default

htt_authenticate username & password challenge
(WWW-Authenticate) dt_String NULL

htt_code status code dt_Integer 404

htt_content content body dt_String NULL

htt_date date & time (Date) dt_String NULL

htt_encoding content compression (Content-Encoding) dt_String NULL

htt_expires content expiration date & time (Expires) dt_String NULL

htt_location URL redirection (Location) dt_String NULL

htt_method_id implemented methods (Allow) dt_Integer NULL

htt_mime_type content MIME type (Content-Type) dt_String text/html

htt_modified content last change date & time (Last-Modified) dt_String NULL

htt_pragma implementation-specific directives (Pragma) dt_String NULL

htt_send_ prefix for additional headers dt_String NULL

htt_service service identification (Server) dt_String NULL

htt_version protocol and version dt_String HTTP/1.0

HTML Presentation

htm_autohtml truthfulness of HTML auto-generation dt_Integer FALSE

htm_body_tag <BODY> tag dt_String NULL

htm_body_bg_color parameter BGCOLOR within <BODY> tag dt_String NULL

htm_body_bg_image parameter BACKGROUND within <BODY> tag dt_String NULL

htm_doctype_tag <!DOCTYPE> tag dt_String NULL

htm_favicon parameter HREF within <LINK> tag dt_String NULL

htm_head_tag <HEAD> tag dt_String NULL

htm_head_title <TITLE> tag within <HEAD> tag dt_String NULL

htm_head_script <SCRIPT> tag within <HEAD> tag dt_String NULL

htm_head_style <STYLE> tag within <HEAD> tag dt_String NULL

Daylight Toolkit Programmers' Guide

20.4.4 Read-Write Properties of a Response 118

htm_prefix prefix to content dt_String NULL

htm_postfix postfix to content dt_String NULL

htt_authenticate is the challenge for a client to authenticate itself and is used with status
code 401. If this property is not set with status code 401, the toolkit will override the response
with "500 Internal Server Error". When this property is not NULL, the value is
used with the "WWW-Authenticate" header field.

◊

htt_code is the response status code and is initialized to 404 (Not Found) when a
TRANSFER object is returned from dt_http_get. This property should be set to 200 for
response that are "OK".

◊

htt_content is the content of the response with NULL as the initial value. This property is the
body of the response sent from the server to the client. When this property is not NULL, the
length in bytes of the content is used with the "Content-Length" header field.

◊

htt_date is the response date & time, for example, Mon, 02 Dec 2002 07:40:03 GMT. The
format conforms to RFC 822 "Standard for the Format of ARPA Internet Text Messages" and
RPC 1123 "Requirements for Internet Hosts -- Application and Support" and avavilable at
http://www.ietf.org/rfc/rfc822.txt and http://www.ietf.org/rfc/rfc1123.txt.

◊

htt_encoding is the encoding or compression performed on the content, for example, base64
or gzip. When this property is not NULL, the value is used with the "Content-Encoding"
header field.

◊

htt_expires is the date & time the resource expires, for example, Mon, 02 Dec 2002 07:40:03
GMT. Like the htt_date property, the format conforms to RFC 822 and FPC 1123.. This
value is used by caches and proxies to store server responses until it expires. When this
property is not NULL, the value is used with the "Expires" header field.

◊

htt_location is the absolute URL for redirecting a request for a resource and is used with
status codes 301 and 302. If this property is not set with status codes 301 and 302, the toolkit
will override the response with "500 Internal Server Error". When this property is
not NULL, the value is used with the "Location" header field.

◊

htt_method_id is a bitwise OR of request method identifiers that are implemented by the
service for the response content. When this property is not NULL, the value is used with the
"Allow" header field. Valid values for this property are:

DX_HTT_METHOD_HEAD - the service implements the request method HEAD.

DX_HTT_METHOD_GET - the service implements the request method GET.

DX_HTT_METHOD_POST - the service implements the request method POST.

DX_HTT_METHOD_ALL - a bitwise OR of all of the above method identifiers.

DX_HTT_METHOD_ANY - disables sending the "Allow" header field.

◊

htt_mime_type is the MIME type of the content, for example "text/html" or "image/gif", and
is initialized to "text/html" when a TRANSFER object is returned from dt_http_get. The
syntax conforms to RFC 1521 "MIME (Multipurpose Internet Mail Extensions)" avavilable at
http://www.ietf.org/rfc/rfc1520.txt. When this property is not NULL, the value is used with
the "Content-Type" header field.

◊

htt_modified is the date & time the resource was last modified. When this property is not
NULL, the value is used with the "Last-Modified" header field.

◊

htt_pragma is the response implementation-specific directives that may apply to any
recipient along the request/response chain. All pragma directives specify optional behavior

◊

Daylight Toolkit Programmers' Guide

20.4.4 Read-Write Properties of a Response 119

http://www.ietf.org/rfc/rfc822.txt
http://www.ietf.org/rfc/rfc1123.txt
http://www.ietf.org/rfc/rfc1520.txt

from the viewpoint of the protocol; however, some systems may require that behavior be
consistent with the directives.
htt_send_ is the property name prefix for sending unimplemented response headers, and have
no predefined property name. For such headers, this prefix should be concatinated with the
header name to construct a property to store the header value. For example, the "Set-Cookie"
header is not implemented, so when a "Set-Cookie" header should be sent, the programmer
should set the htt_send_Set-Cookie property to contain the "Set-Cookie" header value.
In this way, the toolkit can support any response header information. see RFC 2965 "HTTP
State Management Mechanism" at http://www.ietf.org/rfc/rfc2965.txt.

◊

htt_service is the identifier of the service and is set when an object is returned from
dt_http_get. This property is a free-form string and is set to the toolkit software version,
for example, "Daylight/4.81". When this property is not NULL, the value is used with the
"Server" header field.

◊

htt_version is the response protocol and version and is set when an object is returned from
dt_http_get. The value is initialized to match the request protocol and version
(htt_protocol property). So, HTTP/0.9 requests are sent HTTP/0.9 responses (no
headers) and HTTP/1.0 requests are sent HTTP/1.0 responses (with headers). Requests that
are received using HTTP/1.1 and higher will result in this property being initialized to
"HTTP/1.0" within the call to dt_http_get. In order to respond to any other request
protocol, the programmer must set this property (for example, to "HTTP/1.1") and add
appropiate headers using the htt_send_ property prefix prior to calling dt_http_put.

◊

The following properties pertain to HTML Presentation:

htm_autohtml is the HTML auto-generation flag. When this property is zero, all of the
following properties are ignored.

◊

htm_body_tag is the body tag. When this property is NULL, no BODY tag will be used
unless one or both of htm_background or htm_bgcolor properties are non-NULL. For
example:

<BODY BACKGROUND=sunlogo-gray.gif BGCOLOR=e0e0e0>

◊

htm_body_bg_color is the body tag background color parameter. When this property is
NULL, no BGCOLOR parameter will be used within a BODY tag unless specified in the
htm_body property, which overrides this property. For example:

e0e0e0

◊

htm_body_bg_image is the body tag background parameter. When this property is NULL,
no BACKGROUND parameter is used within a BODY tag unless specified in the
htm_body property, which overrides this property. For example:

sunlogo-gray.gif

◊

htm_doctype_tag is the document tag. When this property is NULL, the following value is
used:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 1.1//EN">

◊

htm_favicon is the hypertext reference in the link tag of the header. The reference specifies
the location of a custom icon to be used as a thumbnail image in the 'address box window' and
'bookmark listing'. A common value for this parameter is "/favicon.ico". When this parameter
is not NULL, a LINK tag within the HEAD field will be output. For example:

◊

Daylight Toolkit Programmers' Guide

20.4.4 Read-Write Properties of a Response 120

http://www.ietf.org/rfc/rfc2965.txt

<LINK REL="shortcut icon" TYPE="image/x-icon"
HREF="/favicon.ico" />
htm_head_tag is the head tag. When this property is NULL, no HEAD tag is used unless any
of htm_title, htm_script, or htm_style properties are non-NULL. For example:

<HEAD>
<TITLE>Auto-HTML Format Demo</TITLE>
<SCRIPT LANGUAGE=JavaScript
SRC=/application/x-javascript/loadJavaGrins.js></SCRIPT>
<STYLE TYPE=text/css></STYLE>
</HEAD>

◊

htm_head_title is the title tag. When this property is NULL, no TITLE tag is used unless
specified in the htm_head property, which overrides this property. For example:

<TITLE>Auto-HTML Format Demo</TITLE>

◊

htm_head_script is the script tag. When this property is NULL, no SCRIPT tag is used
unless specified in the htm_head property, which overrides this property. For example:

<SCRIPT LANGUAGE=JavaScript
SRC=/application/x-javascript/loadJavaGrins.js></SCRIPT>

◊

htm_head_style is the style tag. When this property is NULL, no STYLE is used unless
specified in the htm_head property, which overrides this property. For example:

<STYLE TYPE=text/css></STYLE>

◊

htm_prefix is the content that prefixes the htt_content property in the response. This is
used to specify a banner at the top of each page. For example:

<TABLE BORDER CELLSPACING CELLPADDING=4 WIDTH=100%%><TR>
<TD ALIGN=CENTER WIDTH=100%%>Auto-HTML Format
Demo
</TABLE>

◊

htm_postfix is the content that postfixes the htt_content property in the response. This is
used to specify a banner at the bottom of each page. For example:

<TABLE BORDER CELLSPACING CELLPADDING=4 WIDTH=100%%><TR>
<TD ALIGN=CENTER>
 info@daylight.com
<TD ALIGN=CENTER VALIGN=MIDDLE WIDTH=100%%>

 Daylight Chemical Information Systems, Inc.
<TD ALIGN=CENTER VALIGN=MIDDLE><I>Daylight
HTTP Toolkit</I>
</TABLE>

◊

We've covered all properties of the toolkit. Now, let's start using these properties to build various
kinds of programs and control the behavior of the toolkit.

20.5 Working With the Toolkit

We've constructed an example program to respond to GET requests ("Hello World!", Figure 20.3.3f).
In order to respond to GET request in general, you would parse the htt_path property and set the

Daylight Toolkit Programmers' Guide

20.5 Working With the Toolkit 121

htt_code, htt_mime_type, and htt_content properties. Let's move onto processing POST
requests.

20.5.1 Processing the POST Method

Two kinds of POST data content types are supported by the toolkit:

URL-encoding (application/x-www-form-urlencoding)◊
multipart media (multipart/form-data)◊

Both kinds of POST data can be obtained from a HTML form that is created using the following
source code:

Figure 20.5.1. Example Source Code: Set a POST form

....1.

....2.

....3.

....4.

....5.

....6.

....7.

....8.

....9.

....10.

....11.

....12.

....13.

....14.

....15.

....16.

....17.

....18.

....19.

....20.

....21.

....22.

....23.

....24.

....25.

....26.

....27.

....28.

....29.

....30.

....31.

....32.

....33.

....34.

....35.

....36.

/* du_http_form - set form into response
*/
void du_http_form(dt_Handle xfer, char *name, char *type, char *encoding,
 char *action, char *button, int vlen, dt_String value) {

/* begin form */
 dt_appendstring(xfer, 11, "htt_content", 35,
 "<FORM METHOD=POST NAME=form ACTION=");
/* action */

 dt_appendstring(xfer, 11, "htt_content", strlen(action), action);
/* encoding */

 dt_appendstring(xfer, 11, "htt_content", 9, " ENCTYPE=");
 dt_appendstring(xfer, 11, "htt_content", strlen(encoding), encoding);
 dt_appendstring(xfer, 11, "htt_content", 2, ">\n");
/* label */

 dt_appendstring(xfer, 11, "htt_content", strlen(name), name);
/* name */

 dt_appendstring(xfer, 11, "htt_content", 14, ": <INPUT NAME=");
 dt_appendstring(xfer, 11, "htt_content", strlen(name), name);
/* type */

 dt_appendstring(xfer, 11, "htt_content", 6, " TYPE=");
 dt_appendstring(xfer, 11, "htt_content", strlen(type), type);
/* value */

 dt_appendstring(xfer, 11, "htt_content", 7, " VALUE=");
 if(NULL != value)
 dt_appendstring(xfer, 11, "htt_content", vlen, value);
 dt_appendstring(xfer, 11, "htt_content", 2, ">\n");
/* button */

 if (NULL != button) {
 dt_appendstring(xfer, 11, "htt_content", 19, "<INPUT TYPE=BUTTON ");
 dt_appendstring(xfer, 11, "htt_content", strlen(button), button);
 dt_appendstring(xfer, 11, "htt_content", 2, ">\n");
 }
/* end form */

 dt_appendstring(xfer, 11, "htt_content", 40,
 "<INPUT TYPE=SUBMIT NAME=button>\n</FORM>\n");
}

Daylight Toolkit Programmers' Guide

20.5.1 Processing the POST Method 122

....37.

This routine accepts several arguments:

name is an indentification label.◊
type is the input field type, for example, "TEXT" or "FILE".◊
encoding is the content type, for example, "application/x-www-form-urlencoding" or
"multipart/form-data".

◊

action is the target URL.◊
button is for specifying an additional button.◊
value is used to initialize the input field.◊

Each argument is NULL-terminated, except the value argument, which is length-terminated with the
vlen argument.

The du_http_form routine, along with the source code from du_http_post (Figure 20.4.3) and
the Dual-Purpose Server & CGI (Figure 20.2.3) can be reused in other example program. This code is
available in the "Contrib" area of Daylight Software as du_http_main.c. The main routine is
renamed to du_http_main so the library won't have a execution entry point, which calls
my_handler(xfer) just like the "Hello World!" program. A header file for prototypes is called
du_http.h. Also, a "makefile" is available for use with the system make utility. To compile this code
for reuse in other programs, make the libdu.a library, for example,

cd $DY_ROOT/contrib/src
make

All programs in this manual can built using make, for example,

cd $DY_ROOT/contrib/src/http
make http-hello-world

This builds the "Hello World!" program from Figure 20.3.3. Now, let's construct an example program
that uses POST data and our new link library libdu.a.

20.5.1.1 URL-Encoding (application/x-www-form-urlencoded)

Let's construct an example program that uses POST data using a MIME type called
"application/x-www-form-urlencoded". Consider the following "Canonical SMILES" program:

Figure 20.5.1.1. Program Source Code: Canonical SMILES

....1.

....2.

....3.

....4.

....5.

....6.

....7.

....8.

....9.

....10.

....11.

#include <stdio.h>
#include "dt_smiles.h"
#include "dt_http.h"
#include "du_http.h"

/* my_handler - get POST data and set response
*/
static void my_handler(dt_Handle xfer) {
 dt_Handle string;
 dt_String value = NULL;
 dt_Integer vlen = 0;
 char *name = "SMILES", *type = "TEXT";
 char *encoding = "application/x-www-form-urlencoding";

Daylight Toolkit Programmers' Guide

20.5.1.1 URL-Encoding (application/x-www-form-urlencoded) 123

....12.

....13.

....14.

....15.

....16.

....17.

....18.

....19.

....20.

....21.

....22.

....23.

....24.

....25.

....26.

....27.

....28.

....29.

....30.

....31.

....32.

....33.

....34.

....35.

....36.

....37.

....38.

....39.

....40.

....41.

....42.

....43.

....44.

....45.

....46.

/* set return code and mime type */
 dt_setinteger(xfer, 8, "htt_code", 200);
 dt_setstring (xfer, 8, "htt_mime_type", 9, "text/html");

/* get POST data */
 if (NULL_OB != (string = du_http_post(xfer, strlen(name), name)))
 value = dt_string(&vlen, string, 9, "htt_value");

/* write form */
 du_http_form(xfer, name, type, encoding, "/", NULL, vlen, value);

/* parse smiles and canonicalize */
 if (NULL != value) {
 dt_Handle molecule;
 dt_String cansmiles = "invalid";
 dt_Integer clen = 7;

 if (NULL_OB != (molecule = dt_smilin(vlen, value)))
 cansmiles = dt_cansmiles(&clen, molecule, 1);

/* set response */
 dt_appendstring(xfer, 11, "htt_content", 22, "\n<P>Canonical SMILES: ");
 dt_appendstring(xfer, 11, "htt_content", clen, cansmiles);
 dt_appendstring(xfer, 11, "htt_content", 1, "\n");
 dt_dealloc(molecule);
 }
}

/* main - calls dual-purpose server & CGI
*/
int main(int argc, char **argv) {
 return du_http_main(argc,argv);
}

The key aspects of the my_handler routine are calls to:

du_http_post to get a SMILES from POST data◊
du_http_form to set a POST form of type TEXT and encoding
application/x-www-form-urlencoding

◊

dt_smilin and dt_cansmiles to get the canonical form of the SMILES◊
We set "SMILES" to be the name of the text input in the form, then used that name to get to POST
data. Then we used the htt_value property to get the SMILES string. This code is available as
http-cansmi.c in the "Contrib" area of Daylight Software and is made with the command:

cd $DY_ROOT/contrib/src/http
make http-cansmi

Now, let's execute the the program as a CGI:

./http-cansmi << EOF

Daylight Toolkit Programmers' Guide

20.5.1.1 URL-Encoding (application/x-www-form-urlencoded) 124

POST / HTTP/1.0
Content-type: application/x-www-form-urlencoded
Content-length: 30

SMILES=OCC&button=Submit+Query
EOF

You should see output HTML code that contains:

Canonical SMILES: CCO

The program received the request, got the SMILES from POST data, called the SMILES Toolkit to
the get the canonical SMILES and responded "Canonical SMILES: CCO". If you're not sure if
your program output is correct, compare it to http-cansmi.ref (see "Contrib" area of Daylight
Software). This is the complete output from the program.

Now, let's construct an example program that uses multipart/form-data POST data.

20.5.1.2 Multipart Data (multipart/form-data)

Let's construct an example program that uses POST data of a MIME type called
"multipart/form-data". Consider the following "Upload File" program:

Figure 20.5.1.2. Program Source Code: Upload File

....1.

....2.

....3.

....4.

....5.

....6.

....7.

....8.

....9.

....10.

....11.

....12.

....13.

....14.

....15.

....16.

....17.

....18.

....19.

....20.

....21.

....22.

....23.

....24.

....25.

#include <stdio.h>
#include "dt_smiles.h"
#include "dt_http.h"
#include "du_http.h"

/* my_handler - get POST data and set response
*/
static void my_handler(dt_Handle xfer) {
 dt_Handle string;
 dt_String value = NULL;
 dt_Integer vlen = 0;
 char *name = "UPLOAD", *type = "FILE";
 char *encoding = "multipart/form-data";
 dt_String filename = NULL, mimetype = NULL;
 dt_Integer flen = 0, mlen = 0;

/* set return code */
 dt_setinteger(xfer, 8, "htt_code", 200);

/* get file from POST data */
 if (NULL_OB != (string = du_http_post(xfer, strlen(name), name))) {
 value = dt_string(&vlen, string, 9, "htt_value");
 filename = dt_string(&flen, string, 12, "htt_filename");
 mimetype = dt_string(&mlen, string, 13, "htt_mime_type");
 }

/* set MIME type */
 if (NULL != mimetype) {
 dt_setstring (xfer, 8, "htt_mime_type", mlen, mimetype);
 /* set file content into response and return if the MIME type is not HTML */

Daylight Toolkit Programmers' Guide

20.5.1.2 Multipart Data (multipart/form-data) 125

....26.

....27.

....28.

....29.

....30.

....31.

....32.

....33.

....34.

....35.

....36.

....37.

....38.

....39.

....40.

....41.

....42.

....43.

....44.

....45.

....46.

....47.

....48.

....49.

....50.

....51.

....52.

....53.

....54.

....55.

....56.

....57.

....58.

....59.

....60.

....61.

....62.

 if (0 != strncmp("text/html", mimetype, mlen)) {
 dt_appendstring(xfer, 11, "htt_content", vlen, value);
 return;
 }
 }

/* write form */
 du_http_form(xfer, name, type, encoding, "/", NULL, flen, filename);

/* filename */
 if (NULL != filename) {
 dt_appendstring(xfer, 11, "htt_content", 15, "\n<P>Filename: ");
 dt_appendstring(xfer, 11, "htt_content", flen, filename);
 }
/* MIME type */

 if (NULL != mimetype) {
 dt_appendstring(xfer, 11, "htt_content", 15, "\n<P>MIME type: ");
 dt_appendstring(xfer, 11, "htt_content", mlen, mimetype);
 }
/* file contents */

 if (NULL != value) {
 dt_appendstring(xfer, 11, "htt_content", 15, "\n<P>Content: ");
 dt_appendstring(xfer, 11, "htt_content", vlen, value);
 }
 dt_appendstring (xfer, 11, "htt_content", 1, "\n");
}

/* main - calls dual-purpose server & CGI
*/
int main(int argc, char **argv) {
 return du_http_main(argc,argv);
}

This program source code is similar to the previous "Canonical SMILES" program; both use
dt_http_main, dt_http_post, and dt_http_form from the libdu.a library. A key
differences are calls from the my_handler routines to:

du_http_post to get a file from POST data◊
du_http_form to set a POST form of type FILE and encoding multipart/form-data◊

This code is available as http-upload.c in the "Contrib" area of Daylight Software and is made with
the command:

cd $DY_ROOT/contrib/src/http
make http-upload

Now, let's execute the the program as a CGI:

Daylight Toolkit Programmers' Guide

20.5.1.2 Multipart Data (multipart/form-data) 126

./http-upload << EOF
POST / HTTP/1.0
Content-type: multipart/form-data; boundary=---------------------------33163136917725
Content-Length: 300

-----------------------------33163136917725
Content-Disposition: form-data; name="UPLOAD"; filename="foo.html"
Content-Type: text/html

bar
-----------------------------33163136917725
Content-Disposition: form-data; name="button"

Submit Query
-----------------------------33163136917725--
EOF

You should see output HTML code that contains:

Filename: foo.html
MIME type: text/html
Content: bar

The program received the request, got the filename, MIME type, and content from POST data, then
responded with the value of those properties. If you're not sure if your program output is correct,
compare it to http-upload.ref (see "Contrib" area of Daylight Software), which contains the complete
output from the program.

The arguments to du_http_form reflect the difference between
application/x-www-form-urlencoded and multipart/form-data POST data. We
set "UPLOAD" to be the name of the file input in the form, then used that name to get POST data and
the htt_value property to get the content of the file. Further, multipart/form-data POST
data can have additional properties for an uploaded file, such as htt_filename and
htt_mime_type which define the name of the file and the MIME type of the content. The
my_handler routine sets the MIME type of the response to the htt_mime_type property of the
file and sends the form with the file contents only if the MIME type is "text/html". In this way, we can
upload any kind of MIME type, such as "image/gif", and get the form along with the file if the file is
HTML.

20.5.2. Authenticating Access

The basic form of user authentication is base64-encoding. When a client (browser) attempts
unauthorized access for a protected URL, the server sends a "401 Unauthorized" response. This
response normally invokes the client to "pop-up" a window prompting the user for a username and
password. Upon entering a username and password, the client browser encodes the data using the
base64 algorithm. Although the algorithm is simple and can easily be decoded with paper and pencil,
base64-encoding obfuscates text beyond easy recognition. Then the client sends the request for the
protected URL along with the base64-encoding data to the server. In order for the server to validate
the username and password, the base64-encoded data must be decoded. For example:

Figure 20.5.2-1. Example Source Code: Base64 Routines

Daylight Toolkit Programmers' Guide

20.5.2. Authenticating Access 127

....1.

....2.

....3.

....4.

....5.

....6.

....7.

....8.

....9.

....10.

....11.

....12.

....13.

....14.

....15.

....16.

....17.

....18.

....19.

....20.

....21.

....22.

....23.

....24.

....25.

....26.

....27.

....28.

....29.

....30.

....31.

....32.

....33.

....34.

....35.

....36.

....37.

....38.

/* FUNCTION: du_http_base64dechar - decode a base 64 character to a 6-bit digit
*/
static char du_http_base64dechar(char c) {
 if ((96 <c) && (123 > c))
 return c - 71; /* a-z */
 else if ((65 <c) && (91 > c))
 return c - 65; /* A-Z */
 else if ((47 <c) && (58 > c))
 return c + 4; /* 0-9 */
 else if ('+' == c)
 return 62;
 else if ('/' == c)
 return 63;
 else /* if ('=' == c) */
 return 0;
}

/* FUNCTION: du_http_base64decode - decode an ASCII string using base 64
*/
char* du_http_base64decode(int len, char *base64, char *ascii) {
 int i, j, k;
 char a, b, c, d;

 for(i=j=0; i/*convert base 64 character to 6-bit digit */
 a = du_http_base64dechar(*(base64 + i++));
 b = (i < len) ? du_http_base64dechar(*(base64 + i++)) : 0;
 c = (i < len) ? du_http_base64dechar(*(base64 + i++)) : 0;
 d = (i < len) ? du_http_base64dechar(*(base64 + i++)) : 0;

/* join four 6-bit digits into 24-bit integer */
 k = (a << 18) + (b << 12) + (c << 6) + d;

/* decompose 24-bit integer into three 8-bit characters */
 *(ascii + j++) = k >> 16 & 255;
 *(ascii + j++) = k >> 8 & 255;
 *(ascii + j++) = k & 255;
 }
 ascii[j] = '\0';
 return ascii;
}

This source code is part of the libdu.a library.

Now, let's construct an example program that uses base64-decoding to authenticate a username and
password:

Figure 20.5.2-2. Program Source Code: Basic Authentication

....1.

....2.

....3.

....4.

....5.

#include <stdio.h>
#include "dt_smiles.h"
#include "dt_http.h"
#include "du_http.h"

/* my_handler - basic authentication

Daylight Toolkit Programmers' Guide

20.5.2. Authenticating Access 128

....6.

....7.

....8.

....9.

....10.

....11.

....12.

....13.

....14.

....15.

....16.

....17.

....18.

....19.

....20.

....21.

....22.

....23.

....24.

....25.

....26.

....27.

....28.

....29.

....30.

....31.

....32.

....33.

....34.

....35.

....36.

....37.

....38.

....39.

....40.

....41.

....42.

....43.

....44.

....45.

....46.

....47.

....48.

....49.

....50.

....51.

....52.

....53.

....54.

....55.

*/
void my_handler(dt_Handle xfer) {
 dt_String value;
 dt_Integer vlen, klen;
 char *key, *ptr = "Basic realm=\"Daylight Contrib\"";

/* check for file protected with user/passwd mug/coffee */
 if (NULL == (value = dt_string(&vlen, xfer, 13, "htt_authorize"))) {
 dt_setstring(xfer, 16, "htt_authenticate", strlen(ptr), ptr);
 dt_setinteger(xfer, 8, "htt_code", 401);
 return;
 }

/* check that encoding is base64 ("Basic"), else respond 401 (Authenticate) */
 if (0 != memcmp(value, "Basic ", 6)) {
 dt_setstring(xfer, 16, "htt_authenticate", strlen(ptr), ptr);
 dt_setinteger(xfer, 8, "htt_code", 401);
 return;
 }
 value += 6;
 vlen -= 6;

/* allocate memory for key, else respond 500 (Internal Server Error) */
 klen = (vlen*3)/4;
 if(NULL == (key = (char*)malloc(klen*sizeof(char)))) {
 fprintf(stderr, "out-of-memory (malloc(%d) failed)", klen);
 dt_setinteger(xfer, 8, "htt_code", 500);
 return;
 }

/* decode using base64 */
 du_http_base64decode(vlen, value, key);

/* authenticate username/pasword */
 if(0 != memcmp(key, "mug:coffee", 10)) {

/* incorrect username/password, respond 401 (Authenticate) again */
 ptr = "Basic realm=\"Daylight Toolkit\"";
 dt_setstring(xfer, 16, "htt_authenticate", strlen(ptr), ptr);
 dt_setinteger(xfer, 8, "htt_code", 401);
 } else {

/* correct username/password, respond OK */
 dt_setinteger(xfer, 8, "htt_code", 200);
 dt_appendstring(xfer, 11, "htt_content", 19, "Base64 decoding of ");
 dt_appendstring(xfer, 11, "htt_content", vlen, value);
 dt_appendstring(xfer, 11, "htt_content", 4, " is ");
 dt_appendstring(xfer, 11, "htt_content", klen, key);
 dt_appendstring(xfer, 11, "htt_content", 1, "\n");
 }

/* deallocate key */
 free(key);
}

/* main - calls entry point for dual-purpose server & CGI
*/
int main(int argc, char **argv) {
 return du_http_main(argc,argv);
}

Daylight Toolkit Programmers' Guide

20.5.2. Authenticating Access 129

....56.

....57.

....58.

....59.

....60.

....61.

....62.

....63.

....64.

This code has several features worth mentioning:

Line 14: The client must send the "WWW-Authorize" header, which is stored in the
htt_authorize property.

◊

Line 21: The authentication form must be "Basic", which means base64-encoding.◊
Line 38: The server calls the base64-decoding routine (Figure 20.5.2-1).◊
Line 41: The username and password must match "mug:coffee". The colon (":") character is
inserted between the username and password by the client, and so appears in the string that
the server decodes.

◊

This code is available as http-base64.c in the "Contrib" area of Daylight Software and made with the
command:

cd $DY_ROOT/contrib/src/http
make http-base64

Now, let's execute the the program as a CGI:

./http-base64 << EOF
GET / HTTP/1.0
EOF

Status: 401 Unauthorized
Date: Tue, 31 Dec 2002 04:52:34 GMT
Server: Daylight/4.81
WWW-Authenticate: Basic realm="Daylight Contrib"

Here we attempted access and the server responded "401 Unauthorized. Included in the
response is the WWW-Authenticate header, telling the client that the server expects Basic
(base64) encoding. The realm parameter "Daylight Contrib" appears on the window that "pops-up"
prompting for the username and password. This is intended to help the user determine which
username and password is appropiate. Now, let's simulate that the user entered the username "mug"
and password "coffee":

./http-base64 << EOF
GET / HTTP/1.0
Authorization: Basic bXVnOmNvZmZlZQ==
EOF

Date: Tue, 31 Dec 2002 05:24:04 GMT
Server: Daylight/4.81
Content-Length: 52
Content-Type: text/html

Daylight Toolkit Programmers' Guide

20.5.2. Authenticating Access 130

Base64 decoding of bXVnOmNvZmZlZQ== is mug:coffee

The base64-encoded string "bXVnOmNvZmZlZQ==" decodes to "mug:coffee" and the client is
authorized to access the server resources. Using base64-encoding, you can protect resources using a
basic form of authentication.

20.5.3 Serving Files from Disk

As with all other Daylight toolkits, the HTTP Toolkit does not support explicit file I/O. The initial
thought on server resources is to have all content built-in. This has the advantage of independence
from access problems and hardware faults, as well as the disadvantage of not being able to update
data without updating the server. Also, serving files from disk has the problem of configuration (and
security) for data that should (and shouldn't) be served. There's no reasonable solution deserving
implementation within the toolkit. Therefore, this section describes a program that serves files from
disk that is built on top of the toolkit. For exanmple:

Figure 20.5.3-1. Example Source Code: Disk Access Routine

....1.

....2.

....3.

....4.

....5.

....6.

....7.

....8.

....9.

....10.

....11.

....12.

....13.

....14.

....15.

....16.

....17.

....18.

....19.

....20.

....21.

....22.

....23.

....24.

....25.

....26.

....27.

....28.

....29.

....30.

....31.

/* du_http_month - return month number given 3-letter month (Jan=0, Feb=1, etc.)
*/
int du_http_month(char *str) {
 if (0 == memcmp(str, "Jan", 3)) return 0;
 else if (0 == memcmp(str, "Feb", 3)) return 1;
 else if (0 == memcmp(str, "Mar", 3)) return 2;
 else if (0 == memcmp(str, "Apr", 3)) return 3;
 else if (0 == memcmp(str, "May", 3)) return 4;
 else if (0 == memcmp(str, "Jun", 3)) return 5;
 else if (0 == memcmp(str, "Jul", 3)) return 6;
 else if (0 == memcmp(str, "Aug", 3)) return 7;
 else if (0 == memcmp(str, "Sep", 3)) return 8;
 else if (0 == memcmp(str, "Oct", 3)) return 9;
 else if (0 == memcmp(str, "Nov", 3)) return 10;
 else /* Dec */ return 11;
}

/* du_http_file - disk access routine
*/
dt_Integer du_http_file(dt_Handle xfer) {
 dt_String path, value;
 dt_Integer plen, vlen;
 char buf[1024], dmy[4], month[4], tz[4];
 char *ptr, *dy_root, *docroot, filename[1024];
 int fd, rlen, year, mday, hour, min, sec;
 size_t len;
 ssize_t bytes, tbytes=0;
 struct stat fdstat;
 struct tm gmt, since;

/* set document root directory */
 if (NULL == (dy_root = getenv("DY_ROOT"))) {
 dt_setstring (xfer, 11, "htt_content", 15, "DY_ROOT not set");
 dt_setinteger(xfer, 8, "htt_code", 500);
 return 500;
 }
 docroot = "/contrib/src/data/http";

Daylight Toolkit Programmers' Guide

20.5.3 Serving Files from Disk 131

....32.

....33.

....34.

....35.

....36.

....37.

....38.

....39.

....40.

....41.

....42.

....43.

....44.

....45.

....46.

....47.

....48.

....49.

....50.

....51.

....52.

....53.

....54.

....55.

....56.

....57.

....58.

....59.

....60.

....61.

....62.

....63.

....64.

....65.

....66.

....67.

....68.

....69.

....70.

....71.

....72.

....73.

....74.

....75.

....76.

....77.

....78.

....79.

....80.

....81.

 path = dt_string(&plen, xfer, 8, "htt_path");

/* check for access outside document root */
 if (NULL != strstr(path, "../")) {
 dt_setstring (xfer, 11, "htt_content", 15, "filename contains ../");
 dt_setinteger(xfer, 8, "htt_code", 404);
 return 404;
 }

/* check for overflow */
 if (1024 < strlen(dy_root) + strlen(docroot) + plen + 1) {
 dt_setstring (xfer, 11, "htt_content", 17, "filename too long");
 dt_setinteger(xfer, 8, "htt_code", 500);
 return 500;
 }

/* construct absolute filename (ignore arguments) */
 sprintf(filename, "%s%s%.*s", dy_root, docroot, plen, path);
 if (NULL != (ptr = strchr(filename, '+')))
 *ptr = '\0';

/* open file or respond "Not Found" */
 if (-1 == (fd = open(filename, O_RDONLY, 0))) {
 dt_setinteger(xfer, 8, "htt_code", 404);
 return 404;
 }

/* get file statistics */
 if (-1 == (fstat(fd, &fdstat))) {
 len = sprintf(buf, "error signal %d (%s)", errno, strerror(errno));
 dt_setstring(xfer, 11, "htt_content", len, buf);
 dt_setinteger(xfer, 8, "htt_code", 500);
 close(fd);
 return 500;
 }

/* check for content */
 if (0 == fdstat.st_size) {
 dt_setinteger(xfer, 8, "htt_code", 204);
 close(fd);
 return 204;
 }

/* get time-and-date of last modification in RFC 1123 format*/
 if (NULL != gmtime_r(&(fdstat.st_mtime), &gmt))
 if (0 < (len = strftime(buf, 32, "%a, %d %b %Y %H:%M:%S GMT", &gmt)))
 dt_setstring(xfer, 12, "htt_modified", len, buf);

/* check for If-Modified-Since */
 if (NULL != (value = dt_string(&vlen, xfer, 9, "htt_since"))) {
 sscanf(value, "%3s, %2d %3s %4d %2d:%2d:%2d %3s",
 dmy, &mday, month, &year, &hour, &min, &sec, tz);

/* check date for GMT timezone (RFC 1123 conformance) */
 if (0 != memcmp(tz, "GMT", 3)) {
 len = sprintf(buf, "Invalid date format (%.*s)", vlen, value);
 dt_setstring(xfer, 11, "htt_content", len, buf);
 dt_setinteger(xfer, 8, "htt_code", 400);
 close(fd);
 return 400;
 }

Daylight Toolkit Programmers' Guide

20.5.3 Serving Files from Disk 132

....82.

....83.

....84.

....85.

....86.

....87.

....88.

....89.

....90.

....91.

....92.

....93.

....94.

....95.

....96.

....97.

....98.

....99.

....100.

....101.

....102.

....103.

....104.

....105.

....106.

....107.

....108.

....109.

....110.

....111.

....112.

....113.

....114.

....115.

....116.

....117.

....118.

....119.

....120.

....121.

....122.

....123.

....124.

....125.

....126.

....127.

....128.

....129.

....130.

....131.

/* compare file date to "If-Modified-Since" value
 ** if file is older, respond "Not Modified" */
 if ((gmt.tm_year+1900 < year) ||
 (gmt.tm_mon < du_http_month(month)) ||
 (gmt.tm_mday < mday) ||
 (gmt.tm_hour < hour) ||
 (gmt.tm_min < min) ||
 (gmt.tm_sec <= sec)) {
 dt_setinteger(xfer, 8, "htt_code", 304);
 close(fd);
 return 304;
 }
 }

/* read file, set content */
 do {
 bytes = read(fd, buf, len);
 if (0 < bytes)
 dt_appendstring(xfer, 11, "htt_content", bytes, buf);
 tbytes += bytes;
 } while ((0 < bytes) || ((-1 == bytes) && (EINTR == errno)));

/* close file descriptor */
 close(fd);

/* check for error signal */
 if (-1 == bytes) {
 len = sprintf(buf, "error signal %d (%s)", errno, strerror(errno));
 dt_setstring(xfer, 11, "htt_content", len, buf);
 dt_setinteger(xfer, 8, "htt_code", 500);
 return 500;
 }

/* get MIME type from path */
 if(NULL != (ptr = strchr(path+1, '/')))
 if(NULL != (ptr = strchr(ptr+1, '/')))
 dt_setstring(xfer, 13, "htt_mime_type", ptr-path-1, path+1);

/* set status code to success */
 dt_setinteger(xfer, 8, "htt_code", 200);
 return 200;
}

Daylight Toolkit Programmers' Guide

20.5.3 Serving Files from Disk 133

....132.

....133.

....134.

....135.

....136.

....137.

....138.

....139.

This code has some features worth mentioning:

Line 32: The getenv system call must succeed, otherwise the response is set to 500
Internal Server Error".

◊

Line 37: The document root directory is set relative to the DY_ROOT environment variable.◊
Line 41: The URL path must not contain "../", otherwise the response is set to "404 Not
Found". This is a basic security check on the filename to prevent access outside of the
document root directory.

◊

Line 48: The filename local variable must be long enough to contain the name of the file,
otherwise the response is set to "500 Internal Server Error". Changing the local
variable memory from static to dynamic is a reasonable alternative, as it supports very long
filenames provided that the system can allocate the memory space.

◊

Line 55: The absolute filename is constructed from the DY_ROOT environment variable,
document root directory and the URL path. Any arguments after the filename are ignored.

◊

Line 66: The fstat system call must succeed, otherwise the response is set to "500
Internal Server Error".

◊

Line 75: If the file size empty, the response is set to "204 No Content".◊
Line 82: If the gmtime_r and strfime system calls succeed, the htt_modified
property is set, and the "Last-Modified" header is sent in the response.

◊

Line 87: If the htt_since property is not NULL (corresponding to the "If-Modified-Since"
header), the value of the htt_since property is compared to the date of the file.

◊

Line 91: If the date value doesn't specify GMT as the timezone, the response is set to "400
Client Error". This is a minimal check on the data for conformance to the RFC 1123
specification.

◊

Line 100: If the file is older than the date specified by the htt_since property, the
response is set to "304 Not Modified".

◊

Line 113: The interrupt signal is ignored while the file is read and set into the
htt_content property.

◊

Line 124: If a signal other than he interrupt signal ocurrs during reading, the response is set to
"500 Internal Server Error".

◊

Line 134: The MIME type of the file is implied by the first two subdirectories of the URL
path. For example, if the path is text/html/plain-index.html, the (implied) MIME
type is text/html.

◊

Line 137: If execution reaches the end of the routine, the response is set to "200 OK".◊
This source code is part of the libdu.a library.

Now, let's construct an example program that uses the du_http_file routine to serve files from
disk:

Figure 20.5.3-2. Program Source Code: File I/O

....1. #include <stdio.h>

Daylight Toolkit Programmers' Guide

20.5.3 Serving Files from Disk 134

....2.

....3.

....4.

....5.

....6.

....7.

....8.

....9.

....10.

....11.

....12.

....13.

....14.

....15.

....16.

#include "dt_smiles.h"
#include "dt_http.h"
#include "du_http.h"

/* my_handler - serve files from disk
*/
void my_handler(dt_Handle xfer) {
 du_http_file(xfer, fd);
}

/* main - calls entry point for dual-purpose server & CGI
*/
int main(int argc, char **argv) {
 return du_http_main(argc,argv);
}

This code is available as http-file.c in the "Contrib" area of Daylight Software and made with the
command:

cd $DY_ROOT/contrib/src/http
make http-file

Now, let's execute the the program as a CGI:

./http-file << EOF
GET /text/html/index-plain.html HTTP/1.0
EOF

You should see output HTML code that contains:

<H2>Index of /text/plain Subdirectory</H2>

 The Original HTTP as defined in 1991 (HTTP 0.9)

 The WWW Common Gateway Interface Version 1.1 (CGI 1.1)

 RFC 822: Standard for the Format of ARPA Internet Text Messages (date for
mat)

 RFC 1123: Requirements for Internet Hosts -- Application and Support (dat
e format)

 RFC 1521: MIME (Multipurpose Internet Mail Extensions)

 RFC 1945: Hypertext Transfer Protocol -- HTTP/1.0

 RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1

 RFC 2965: HTTP State Management Mechanism (cookies)

Daylight Toolkit Programmers' Guide

20.5.3 Serving Files from Disk 135

The program received the request, got the file (/text/html/index-plain.html), set the
MIME type as implied from the URL path (text/html), and responded with the contents of the
file. The file is a prepared index of the /text/plain subdirectory, which contains links to public
documents pertaining to HTTP specifications used to develop the HTTP Toolkit. If you're not sure if
your program output is correct, compare it to http-file.ref (see "Contrib" area of Daylight Software),
which contains the complete output from the program.

20.5.4. Scripting with Java

As the name implies, JavaScript is a scripting language for Java. One way to use JavaScript in HTML
is to specify a <SCRIPT> tag that defines the script and an <INPUT> button to invoke the script.
Using the toolkit, we can do this by setting the htm_head_script property and specifying the
button argument to the du_http_form call:

Figure 20.5.4. Program Source Code: Canonical JavaGrins

....1.

....2.

....3.

....4.

....5.

....6.

....7.

....8.

....9.

....10.

....11.

....12.

....13.

....14.

....15.

....16.

....17.

....18.

....19.

....20.

....21.

....22.

....23.

....24.

....25.

....26.

....27.

....28.

....29.

....30.

....31.

....32.

....33.

....34.

#include <stdio.h>
#include "dt_smiles.h"
#include "dt_http.h"
#include "du_http.h"

/* my_handler - get POST data and set response
*/
static void my_handler(dt_Handle xfer) {
 dt_Handle string;
 dt_String value = NULL;
 dt_Integer vlen = 0;
 char *name = "SMILES", *type = "TEXT";
 char *encoding = "application/x-www-form-urlencoding";
 char *script = "LANGUAGE=JavaScript SRC=/application/x-javascript/loadJavaGrins.js";
 char *button = "VALUE=JavaGrins ONCLICK=makeNewWindow('smilesForm.smiles')";

/* serve files from disk, except for special POST URL ("/") */
 path = dt_string(&plen, xfer, 8, "htt_path");
 if (1 < plen) {
 du_http_file(xfer);
 return;
 }

/* set return code and mime type */
 dt_setinteger(xfer, 8, "htt_code", 200);
 dt_setstring (xfer, 8, "htt_mime_type", 9, "text/html");

/* set script and button */
 dt_setinteger(xfer, 12, "htm_autohtml", 1);
 dt_setstring (xref, 15, "htm_head_script", strlen(script), script);

/* get POST data */
 if (NULL_OB != (string = du_http_post(xfer, strlen(name), name)))
 value = dt_string(&vlen, string, 9, "htt_value");

/* write form */
 du_http_form(xfer, name, type, encoding, "/", button, vlen, value);

/* parse smiles and canonicalize */
 if (NULL != value) {
 dt_Handle molecule;

Daylight Toolkit Programmers' Guide

20.5.4. Scripting with Java 136

....35.

....36.

....37.

....38.

....39.

....40.

....41.

....42.

....43.

....44.

....45.

....46.

....47.

....48.

....49.

....50.

....51.

....52.

....53.

....54.

....55.

....56.

....57.

....58.

....59.

 dt_String cansmiles = "invalid";
 dt_Integer clen = 7;

 if (NULL_OB != (molecule = dt_smilin(vlen, value)))
 cansmiles = dt_cansmiles(&clen, molecule, 1);

/* set response */
 dt_appendstring(xfer, 11, "htt_content", 22, "\n<P>Canonical SMILES: ");
 dt_appendstring(xfer, 11, "htt_content", clen, cansmiles);
 dt_appendstring(xfer, 11, "htt_content", 1, "\n");
 dt_dealloc(molecule);
 }
}

/* main - calls dual-purpose server & CGI
*/
int main(int argc, char **argv) {
 return du_http_main(argc,argv);
}

This program adapted from "Canonical SMILES" (Figure 20.5.1.1). The key additions are:

Line 14: The JavaScript language and source are defined.◊
Line 15: The invocation button is defined.◊
Line 18: URLs other than "/" are processed as a file from disk.◊
Line 29: The htm_autohtml property is turned on.◊
Line 30: The htm_head_script property is set.◊
Line 37: The invocation button is a parameter to du_http_form.◊

This code is available as http-javagrins.c in the "Contrib" area of Daylight Software and is made with
the command:

cd $DY_ROOT/contrib/src/http
make http-javagrins

Since JavaGrins is a graphical drawing tool, testing this program requires interaction with a browser.
When you click on the button labeled "JavaGRINS", the drawing tool should "pop-up". You will need
the dayutilserver license to convert drawings to SMILES. For more information on JavaGrins
or the dayutilserver, see Daylight's JavaGrins User Guide at
http://www.daylight.com/dayhtml/doc/java/javagrins.html.

Nongraphically, we can test that the JavaScript language, script, and invocation button are included in
the HTML output. This will test that the htm_autohtml and htm_head_script properties and
that the button parameter to the du_http_form call works properly. So, let's execute the the
program as a CGI:

./http-javagrins << EOF

Daylight Toolkit Programmers' Guide

20.5.4. Scripting with Java 137

http://www.daylight.com/dayhtml/doc/java/javagrins.html

GET / HTTP/1.0
EOF

You should see output HTML code that contains:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 1.1//EN">
<HTML>
<HEAD>
<SCRIPT LANGUAGE=JavaScript SRC=/application/x-javascript/loadJavaGrins.js></SCRIPT>
</HEAD>
<BODY>

<P><FORM METHOD=POST NAME=form ACTION=/ ENCTYPE=application/x-www-form-urlencoding>
SMILES: <INPUT NAME=SMILES TYPE=TEXT VALUE=>
<INPUT TYPE=BUTTON VALUE=JavaGrins ONCLICK=makeNewWindow('smilesForm.smiles')>
<INPUT TYPE=SUBMIT NAME=button>
</FORM>

</BODY>
</HTML>

We see that a non-zero htm_autohtml property value makes the toolkit output HTML tags before
and after the form. The htm_head_script property value is in the SCRIPT tag and the button
parameter to the du_http_form call is in the form. If you're not sure if your program output is
correct, compare it to http-javagrins.ref (see "Contrib" area of Daylight Software), which contains the
complete output from the program.

20.5.5 Formatting With Automatic HTML

Section 20.4.4 describes HTML presentation properties. In this section, we'll demonstrate use of the
properties and look at the HTML output that is produced:

Figure 20.5.5. Program Source Code: Automatic HTML

....1.

....2.

....3.

....4.

....5.

....6.

....7.

....8.

....9.

....10.

....11.

....12.

....13.

....14.

....15.

....16.

....17.

#include <stdio.h>
#include "dt_smiles.h"
#include "dt_http.h"
#include "du_http.h"

/* my_handler - demonstration of automatic HTML formatting
*/
void my_handler(dt_Handle xfer) {
 dt_String method, path, protocol;
 dt_Integer mlen, plen, rlen;

 method = dt_string(&mlen, xfer, 10, "htt_method");
 path = dt_string(&plen, xfer, 8, "htt_path");
 protocol = dt_string(&rlen, xfer, 12, "htt_protocol");

 dt_setinteger (xfer, 8, "htt_code", 200);
 dt_setstring (xfer, 13, "htt_mime_type", 9, "text/html");
 dt_setstring (xfer, 11, "htt_content", 12, "Hello World!");
 dt_appendstring (xfer, 11, "htt_content", 12, "\n\nMethod: ");
 dt_appendstring (xfer, 11, "htt_content", mlen, method);
 dt_appendstring (xfer, 11, "htt_content", 11, "\nPath: ");

Daylight Toolkit Programmers' Guide

20.5.5 Formatting With Automatic HTML 138

....18.

....19.

....20.

....21.

....22.

....23.

....24.

....25.

....26.

....27.

....28.

....29.

....30.

....31.

....32.

....33.

....34.

....35.

....36.

....37.

....38.

....39.

....40.

....41.

....42.

....43.

....44.

....45.

....46.

....47.

....48.

....49.

....50.

....51.

....52.

....53.

....54.

....55.

....56.

....57.

 dt_appendstring (xfer, 11, "htt_content", plen, path);
 dt_appendstring (xfer, 11, "htt_content", 11, "\nProtocol: ");
 dt_appendstring (xfer, 11, "htt_content", rlen, protocol);
 dt_appendstring (xfer, 11, "htt_content", 1, "\n");
/* auto-HTML formatting */

 dt_setinteger (xfer, 12, "htm_autohtml", 1);
 dt_setstring (xfer, 17, "htm_body_bg_color", 6, "e0e0e0");
 dt_setstring (xfer, 14, "htm_head_title", 21, "Auto-HTML Format Demo");
 dt_setstring (xfer, 10, "htm_prefix", 191,
 "<TABLE BORDER CELLSPACING CELLPADDING=4 WIDTH=100%><TR>\n"
 "<TD ALIGN=CENTER WIDTH=100%>\n"
 " Auto-HTML Format Demo\n"
 "<TD ALIGN=CENTER>\n"
 " \n"
 " info@daylight.com\n"
 "<TD ALIGN=CENTER VALIGN=MIDDLE WIDTH=100%>\n"
 " \n"
 " Daylight Chemical Information Systems, Inc.\n"
 "<TD ALIGN=CENTER VALIGN=MIDDLE>\n"
 " <I>Daylight
");
 ver = dt_info(&vlen, NULL_OB, "toolkit_version");
 dt_appendstring (xfer, 11, "htm_postfix", vlen, ver);
 dt_appendstring (xfer, 11, "htm_postfix", 13, "</I>\n</TABLE>");
}

/* main - calls entry point for dual-purpose server & CGI
*/
int main(int argc, char **argv) {
 return du_http_main(argc,argv);
}

This program is adapted from "Hello World!" (Figure 20.3.3). The key additions are:

Line 27: Automatic HTML formatting is turned on.◊
Line 28: The background color is set to light gray.◊
Line 29: The title is set to "Auto-HTML Format Demo".◊
Line 30: The page content is prefixed with a table.◊
Line 34: The page content is postfixed with a table.◊

This code is available as http-autohtml.c in the "Contrib" area of Daylight Software and is made with
the command:

Daylight Toolkit Programmers' Guide

20.5.5 Formatting With Automatic HTML 139

cd $DY_ROOT/contrib/src/http
make http-autohtml

Now, let's execute the the program as a CGI:

./http-autohtml << EOF
GET / HTTP/1.0
EOF

You should see output HTML code that contains:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 1.1//EN">
<HTML>
<HEAD>
<TITLE>Auto-HTML Format Demo</TITLE>
</HEAD>
<BODY BACKGROUND=image/gif/sunlogo-gray.gif>

<P><TABLE BORDER CELLSPACING CELLPADDING=4 WIDTH=100%><TR>
<TD ALIGN=CENTER WIDTH=100%>
 Auto-HTML Format Demo
<TD ALIGN=CENTER>

 info@daylight.com
<TD ALIGN=CENTER VALIGN=MIDDLE WIDTH=100%>

 Daylight Chemical Information Systems, Inc.
<TD ALIGN=CENTER VALIGN=MIDDLE>
 <I>Daylight
4.81</I>

If you're not sure if your program output is correct, compare it to http-autohtml.ref (see "Contrib" area of
Daylight Software), which contains the complete output from the program.

20.5.6 Adding Color to GIF Images

Here's a neat trick for adding color to GIF images. This is useful for using one image in many HTTP services
and distinguishing them by the color of its image. This technique uses red, green, and blue arguments from the
URL and works on GIF images that are of type grayscale:

Figure 20.5.6-1. Example Source Code: gif2rgb

....1.

....2.

....3.

....4.

....5.

....6.

....7.

....8.

....9.

....10.

/* du_http_gif2rgb - add color to a GIF image
*/
void du_http_gif2rgb(char *gif, int red, int green, int blue) {
 int i, byte[7] = { 19, 25, 22, 13, 28, 16, 31 };

 for (i = 0; i < 7; i++) {
 gif[byte[i]] += red;
 gif[byte[i]+1] += green;
 gif[byte[i]+2] = blue;
 }
}

Daylight Toolkit Programmers' Guide

20.5.6 Adding Color to GIF Images 140

....11.

This source code is part of the libdu.a library.

Now, let's construct an example program that uses the du_http_gif2rgb routine to add color to a GIf
image:

Figure 20.5.6-2. Program Source Code: Color GIF

....1.

....2.

....3.

....4.

....5.

....6.

....7.

....8.

....9.

....10.

....11.

....12.

....13.

....14.

....15.

....16.

....17.

....18.

....19.

....20.

....21.

....22.

....23.

....24.

....25.

....26.

....27.

....28.

....29.

....30.

....31.

....32.

....33.

....34.

....35.

....36.

....37.

....38.

....39.

....40.

....41.

#include <stdio.h>
#include "dt_smiles.h"
#include "dt_http.h"
#include "du_http.h"

/* my_handler - serve files from disk
*/
void my_handler(dt_Handle xfer) {
 dt_String path, type, args, gif;
 dt_Integer len;
 int red, green, blue;

 du_http_file(xfer);

/* check for GIf */
 type = dt_string(&len, xfer, 13, "htt_mime_type");
 if ((9 == len) && (0 == memcmp("image/gif", type, 9))) {

/* check for RGB argument in URL */
 path = dt_string(&len, xfer, 8, "htt_path");
 for (args = path; args <= path+len-4; args++)
 if (0 == memcmp(args, "+rgb=", 5))
 break;

 if (args <= path+len-5) {
/* get RGB 8-bit values */

 sscanf(args+5, "%2x%2x%2x", &red, &green, &blue);
 if (0 != (red + green + blue)) {
/* get GIf image */
 if (NULL != (gif = dt_string(&len, xfer, 11, "htt_content")))
/* add color */

 du_http_gif2rgb(gif, red, green, blue);
 }
 }
 }
}

/* main - calls entry point for dual-purpose server & CGI
*/
int main(int argc, char **argv) {
 return du_http_main(argc,argv);
}

Daylight Toolkit Programmers' Guide

20.5.6 Adding Color to GIF Images 141

....42.

This code is available as http-color.c in the "Contrib" area of Daylight Software and made with the command:

cd $DY_ROOT/contrib/src/http
make http-color

To invoke RGB coloring of a GIF, add "+rgb=" and a 6-character hexidecimal string to a GIF URL. The first
2 character are for red, the next two for green, and the last two for blue. For example, the URL
/image/gif/sunlogo-gray.gif+rgb=08010f adds 8 parts red, 1 part green, and 15 parts blue to
make a faint purple image.

20.5.7 Avoiding Run-Time Problems With Compiler Definitions

The consequence of a mispelled literal at run-time often costs more time to solve than at compile-time. This
section is dedicated to a simple, yet effective, technique that uses property name definitions to enable the
compiler to detect a misspelling instead of experiencing a run-time problem.

Given the numerous named properties in this toolkit, the probability of misspelling a string literal, i.e.,
"htt_data" instead of "htt_date" is quite high. From the compiler point-of-view, a misspelled literal is
syntactically correct, so no problem is detected. At run-time, a problem arises from use of a misspelled
property name:

date = dt_string(&length, xfer, 8, "htt_data")

This returns NULL (and length equal to -1). Lack of return value checking (as is often the case) can make this
problem difficult to solve (I've actually misspelled htt_date a couple times). If you're good, you'll find the
problem quickly, otherwise, this misspelling problem may cost many minutes or perhaps hours to characterize
and correct. In dt_http.h, each property name is defined:

#define DX_HTT_DATE "htt_date"

Uuse of the definition (DX_HTT_DATE) instead of the literal ("htt_date") effectively enables the compiler
to detect a misspelling:

date = dt_string(&length, xfer, strlen(DX_HTT_DATE), DX_HTT_DATA);

This produces a compiler error such as:

"my_http.c", line 11: undefined symbol: DX_HTT_DATA

Using property name definitions can save significant time during development of HTTP Toolkit programs.
Further, with some compilers (i.e., GCC), the strlen call is substituted with the actual length of the string
literal at compile-time, so there's no cost in including strlen as an argument to dt_string. Further,
specifying the string length and literal in a dt_string call (strlen(DX_HTT_DATA),
DX_HTT_DATA) creates the possibility that the two interdependent arguments may be inconsistent:

date = dt_string(&length, xfer, strlen(DX_HTT_DATE), DX_HTT_PATH);

Defining a macro like:

Daylight Toolkit Programmers' Guide

20.5.7 Avoiding Run-Time Problems With Compiler Definitions 142

#define DU_PROP(x) strlen(x), x

Using it in calls to dt_string:

date = dt_string(&length, xfer, DU_PROP(DX_HTT_DATE));

This averts the problem, or at least makes programming with property names a bit more convenient.

20.5.8 Technical Specifications, Methods, Headers, and Status Codes

This toolkit is compliant with HTTP/1.0 and adheres to specifications in the the following references:

Gourley, D.; Totty, B., "HTTP: The Definitive Guide", First Edition, O'Reilly & Associates, Inc.,
September 2002.

1.

Coar, K., "The WWW Common Gateway Interface Version 1.1", Internet Draft, June 1999.
(http://cgi-spec.golux.com/draft-coar-cgi-v11-03.txt)

2.

Berners-Lee, T.; Fielding, R.; Frystyk, H., "Hypertext Transfer Protocol -- HTTP/1.0", Request for
Comments: 1945, May 1996. (http://www.ietf.org/rfc/rfc1945.txt)

3.

Gundavaram, S., "CGI Programming on the World Wide Web", First Edition, O'Reilly & Associates,
Inc., March 1996.

4.

Berners-Lee, T., "The Original HTTP as defined in 1991", W3C, 1991.
(http://www.w3.org/Protocols/HTTP/AsImplemented.html)

5.

The following methods have an integer definition in dt_http.h:

GET•
HEAD•
POST•

The following headers have a named property defined in dt_http.h:

General
Date♦
Pragma♦

•

Request
Authorization♦
From♦
If-Modified-Since♦
Referer♦
User-Agent♦

•

Response
Location♦
Server♦
WWW-Authenticate♦

•

Content
Allow♦
Content-Encoding♦
Content-Length♦
Content-Type♦
Expires♦
Last-Modified♦

•

Daylight Toolkit Programmers' Guide

20.5.8 Technical Specifications, Methods, Headers, and Status Codes 143

http://cgi-spec.golux.com/draft-coar-cgi-v11-03.txt
http://www.ietf.org/rfc/rfc1945.txt
http://www.w3.org/Protocols/HTTP/AsImplemented.html

The following status codes are recognized in dt_http_put:

200 OK•
201 Created•
202 Accepted•
204 No Content•
301 Moved Permanently•
302 Found•
304 Not Modified•
400 Bad Request•
401 Unauthorized•
403 Forbidden•
404 Not Found•
500 Internal Server Error•
501 Not Implemented•
502 Bad Gateway•
503 Service Unavailable•

21. Reentrant Toolkit Interface

21.1 Introduction

Beginning with version 4.93, the Daylight toolkits can be used effectively in a multi-threading environment.
There are several driving forces for this development:

Database searching. In database systems such as Daycart and Merlinserver multithreading can be used
to seamlessly provide increased search throughput and performance improvement.

•

Java. Java supports full multithreading in its object model and a robust toolkit interface to Java should
be multithreaded. Previous Java wrappers for the Daylight toolkits were limited by the concurrency
issues within the Daylight toolkit.

•

Pthreads. The POSIX thread interface (which includes threads, mutexes, conditional variables, signal
handling) provides cross-platform capabilities for developing multithreaded applications. This
environment allows standard programming methods to be applied for multithreading applications.

•

With 4.93 we are providing a general, reentrant, multithreading interface to the Daylight toolkits via POSIX
threads. The multithreading interface does not substantially change the current external toolkit interface and
causes minimal impact on performance of single-threaded toolkit programs.

21.2 Data Issues

Above and beyond the normal programming concerns, the main additional issue which one must be aware of
when writing multithreading toolkit programs is the potential need to share objects and other resources within
the toolkits across multiple threads.

Because the Daylight Toolkit provides an opaque object model (the internal structure and implementation of
the objects is not visible to the programmer) we must provide rules to guide the sharing of objects. There are
two main programming models which can be used in a multithreaded program. In both models, however,
there are some common features.

Daylight Toolkit Programmers' Guide

21. Reentrant Toolkit Interface 144

First, all error-handling and error queues are implemented on a per-thread basis. That is, if a toolkit function
results in an error, that error will be placed on the error queue for the thread which ran the function. The error
will not be visible to any other threads. The functions dt_errors(3), dt_errorworst(3), dt_errorsave(3), and
dt_errorclear(3) operate on the current threads error queue only.

Heap data (eg. from malloc()) is shared across the entire process. This is as expected for a multithreaded
program, however the implications for Daylight Toolkit objects are worth mentioning. All of the internal
toolkit object implementations use heap data and the toolkits perform large numbers of malloc() and free()
calls. Hence, the performance of the system malloc library is critical to overall throughput of a multithreaded
Daylight toolkit program. On some platforms it is desirable to use an alternative malloc library instead of the
default system malloc library. On Solaris the library /usr/lib/libmtmalloc.a is optimized for multithreading
programs and improves performance significantly. On Linux and SGI the default system malloc library gives
good performance.

The other issue with heap data is strings within the toolkit. Most of the toolkit functions which return strings
(eg. dt_cansmiles()) are actually returning pointers to strings which are owned by the object itself. It is valid to
use these strings across threads, however one must make sure that the object continues to exist within the
program.

int funca(char *arg)
{
 pthread_t tid;

 dt_Handle mol;
 dt_String str;
 dt_Integer slen;

 mol = dt_smilin(strlen(arg), arg);
 str = dt_cansmiles(&slen, mol, 1);

 pthread_create(&tid, NULL, funcb, str);

 dt_dealloc(mol);
 return 0;
}

In the above example, a new thread calling 'funcb()' is created. The problem here is that the canonical
SMILES string (str), which is passed into the child thread, gets removed when the molecule object is
deallocated. It is likely that funcb() will fail as soon as it tries to use the string. In this case it would be better
to duplicate 'str' and pass the duplicate to the child thread.

21.3 Per-Thread Object Model

The first model for programming uses per-thread objects. Each thread maintains its own handle table for
dispatching handles to their underlying objects. The objects are not shared across threads. This is the simpler
model to implement as no locking of objects needs to be performed.

The basic program requirements are as follows:

The function dt_mp_initialize(DX_MP_PER_THREAD_HANDLES) must be called before any
toolkit objects are allocated. It is generally best to call this function from the main thread during
startup.

•

Daylight Toolkit Programmers' Guide

21.2 Data Issues 145

Each child thread created in the program will only have access to objects created within that thread. It
is important to note that every thread *may* use a given handle ID to represent a different local
object. That is, every thread has it's own internal table of handle IDs and the same ID numbers will be
used by multiple threads. So if a programmer takes a handle allocated in one thread and attempts to
access it in second thread, the second thread will find that the handle is either invalid or refers to a
different object (local) object.

If an object is required in multiple threads it is necessary to create that object from it's string
representation in each thread. Typically one thread can create a string from the object and pass that
string to the other threads that need the object. They will then instantiate a local object.

•

A simple example is the smarts_filter_mt.c program, which reads SMILES on stdin and writes any SMILES
which match a given SMARTS query to stdout.

void *do_smarts_forever(void *arg)
{
 static const int ok = 1;
 static const int fail = -1;
 char line[MAXSMI];
 dt_Handle mol, pattern, pathset;
 char *smarts = (char *)arg;

 pattern = dt_smartin(strlen(smarts), smarts);
 if (pattern == NULL_OB)
 {
 fprintf(stderr, "Can't parse SMARTS in child thread\n", smarts);
 return((void *)&fail);
 }

 while (!feof(stdin))
 {
 if (!gets(line))
 return((void *)&ok);

 mol = dt_smilin(strlen(line), line);
 if (mol != NULL_OB)
 {
 pathset = dt_match(pattern, mol, TRUE);
 if (pathset != NULL_OB)
 {
 dt_dealloc(pathset);
 printf("%s\n", line);
 }
 }
 dt_dealloc(mol);
 }
 return((void *)&ok);
}

#define THR_COUNT 4

int main(int argc, char *argv[])
{
 pthread_t tid;
 int i;

 dt_mp_initialize(DX_MP_PER_THREAD_HANDLES);

Daylight Toolkit Programmers' Guide

21.3 Per-Thread Object Model 146

 /*** Get SMARTS from command line ***/

 if (2 != argc)
 {
 fprintf(stderr, "usage: %s SMARTS\n", argv[0]);
 exit(1);
 }

 for (i = 0; i <THR_COUNT; i++)
 pthread_create(&tid, NULL, do_smarts_forever, (void *)&argv[1]);
 return (0);
}

The main points illustrated in the smarts_filter example are:

Each thread creates it's own local 'pattern' object from the given SMARTS string rather than
attempting to share a single pattern.

•

The coordination of input and output streams (gets() and printf()) is handled by the stdio library. Since
the granularity of the I/O is line-at-a-time the stdio library makes sure that the I/O is parsed properly.
The programmer does not need to do anything special.

•

21.4 Global Object Model

The second model for programming used global objects. That is, every object allocated within the application
is visible to all threads. This model is more complicated to implement as it is necessary for the programmer to
synchronize access to any shared objects that are used between threads.

The basic program requirements are as follows:

The function dt_mp_initialize(DX_MP_GLOBAL_HANDLES) must be called before any toolkit
objects are allocated. It is generally best to call this function from the main thread during startup.

•

There is a single handle ID namespace, so handles can be passed between threads and reference the
same object in both threads. Objects which are created and used locally within a thread do not need
special handling; they can be used without any locking or synchronization.

•

If an object is required in multiple threads the program must take care to only allow one thread to be
accessing the object and it's methods at a time. The functions dt_mp_lock(), dt_mp_trylock(), and
dt_mp_unlock() are provided as a convenience for these operations.

•

The analogous smarts_filter_mt.c is shown below, where the SMARTS pattern is shared between all threads.

static dt_Handle pattern;

void *do_smarts_forever(void *arg)
{
 static const int ok = 1;
 static const int fail = -1;
 char line[MAXSMI];
 dt_Handle mol, pathset;

 while (!feof(stdin))
 {
 if (!gets(line))
 return((void *)&ok);

Daylight Toolkit Programmers' Guide

21.4 Global Object Model 147

 mol = dt_smilin(strlen(line), line);

 if (mol != NULL_OB)
 {
 dt_mp_lock(pattern);
 pathset = dt_match(pattern, mol, TRUE);
 dt_mp_unlock(pattern);
 if (pathset != NULL_OB)
 {
 dt_dealloc(pathset);
 printf("%s\n", line);
 }
 }
 dt_dealloc(mol);
 }
 return((void *)&ok);
}

#define THR_COUNT 4

int main(int argc, char *argv[])
{
 pthread_t tid;
 int i;

 dt_mp_initialize(DX_MP_PER_THREAD_HANDLES);

 /*** Get SMARTS from command line ***/

 if (2 != argc)
 {
 fprintf(stderr, "usage: %s SMARTS\n", argv[0]);
 exit(1);
 }

 pattern = dt_smartin(strlen(smarts), smarts);
 if (pattern == NULL_OB)
 {
 fprintf(stderr, "Can't parse SMARTS in child thread\n", smarts);
 exit(1);
 }

 for (i = 0; i <THR_COUNT; i++)
 pthread_create(&tid, NULL, do_smarts_forever, NULL);
 return (0);
}

In the above example, the pattern object is created in the parent (main) thread. Each child uses the same
pattern object for the dt_match() operation. The pattern object must be locked before executing the dt_match()
function and unlocked after the match is complete.

It is important to note that the dt_mp_lock()/dt_mp_unlock() mechanism is a cooperative locking scheme.
Every thread which needs to access a shared object must lock it. When one thread locks an object it does not
automatically prevent other threads from accessing the object or calling it's methods; the programmer has the
responsibility of guarding against access by other threads.

Daylight Toolkit Programmers' Guide

21.4 Global Object Model 148

21.5 Object Granularity

Since the toolkit is implemented using an opaque interface, internal behaviors of toolkit functions are not
rigorously defined. Only external behaviors are well defined. This is a very pleasant model for Daylight; we
are free to use lazy evaluation, to organize internal data however we choose, and to change these internal data
organizations at will.

The unfortunate side effect of this opaque interface is that we can't precisely describe the results of a given
modification of one object. A seemingly simple modification to an object may have far-reaching impacts upon
other data structures within the toolkit. Given that the key to a multithreaded library implementation is the
control of data modifications, this leads to a problem. The solution to this problem is simply to define the
allowed concurrancy at a larger granularity than otherwise possible.

The basic granularity of access allowed for objects within the toolkit is the object family. The 'object family' is
a new concept within the toolkit which refers to a collection of objects which are related to one-another as
parent/children or base/derivitives. All objects within an object family will share the same object as their
ancestor (dt_ancestor(3)). The ancestor object is the ultimate parent of all of the objects within the family.

If a thread is accessing/manipulating any object within an object family it is not safe for another thread to be
accessing/manipulating any other objects within that object family. Because we can guarantee that side-effects
caused by one thread manipulating an object will be contained within the object family, this works out to
allow well-defined behavior for multithreaded programs.

There is one complication however, which is toolkit functions which depend on multiple objects (eg.
dt_match()). In those cases each thread must have exclusive access to all of the object families needed for the
function in order to be thread safe. In the case of dt_match() the thread must either lock both the pattern object
and the target object. Alternatively, if either object is known to be local to a thread (eg. in the
smarts_filter_mt.c example above the molecule is local to the thread) then it is not necessary to lock that
object.

21.6 Thread Safety versus Reentrancy

The toolkit is reentrant, not thread-safe. It is the responsibility of the programmer to take the tools and write
multithreading applications. If desired, one can implement a heavy-handed thread-safe toolkit interface as
follows. Every toolkit function could be wrapped with a layer which locks the object family before operating
on an object, then this wrapper layer would provide a completely thread-safe toolkit API. This wrapper would
probably have fairly poor performance.

dp_xxx(ob)
{

 dt_mp_lock(ob);
 rc = dt_xxx(ob);

 if (type(rc) is string)
 duplicate string;
 dt_mp_unlock(ob))
 return rc or duplicate string;
}

Note that in the above wrapper any returned strings are duplicated. This eliminates the previously mentioned
warning about accessing strings within shared objects.

Daylight Toolkit Programmers' Guide

21.5 Object Granularity 149

Nothing prevents a programmer from misusing threads, or from accessing the same object from multiple
threads. Only if the programmer always gets a lock for the object family before modification can he be
guaranteed to have exclusive access to the object. If one or more threads does not obey this convention, then
the program may not be thread-safe.

21.7 Limitations

There are several areas of the toolkit which are not reentrant and can not be used by multiple threads at the
same time.

The database access toolkits (Thor and Merlin client toolkits) are not reentrant and can not be used by more
than one thread in a program at a time. It is possible for a multithreaded program to include these toolkits
provided that access to both toolkits is serialized completely within the application.

The Rubicon toolkit is not reentrant and can not be used by more than one thread at a time. It is possible for a
multithreaded program to include Rubicon functionality provided that access to the toolkit is serialized
completely within the application.

Within the depict toolkit, use of the dt_depict() function and drawing library must be serialized across the
entire application. It is not possible for multiple dt_depict() calls to be in progress in different threads at the
same time since both will result in the invocation of global drawing library functions. In practice, the drawing
library that a user implements must reference one or more global variables (locked along with the dt_depict()
function) which can provide the local thread context necessary for the desired drawing operations.

Several obsolete toolkit functions are not reentrant. These include dt_smilinerrtext(), dt_alloc_fp(),
dt_fp_fingerprint(), dt_fp_fold(), dt_fp_mindensity(), dt_fp_minsize(), dt_fp_size(), dt_fp_setmindensity(),
dt_fp_setminsize() and dt_fp_setsize(). These functions had previously been made obsolete because their API
did not fit well within the Daylight toolkit model and should not be used for new programs.

Daylight Toolkit Programmers' Guide

21.6 Thread Safety versus Reentrancy 150

	Table of Contents
	 Daylight Toolkit Programmers' Guide
	1. Introduction
	1.1 Daylight Toolkit Modules
	1.2 Audience and Background
	1.3 Other References
	1.4 Conventions
	1.5 Compiling and Linking
	1.5.1 Compiling
	1.5.2 Linking
	1.5.3 Toolkit Libraries
	1.5.4 Advanced Programming

	2. Basics: Daylight Toolkit Objects
	2.1 Introduction to Objects
	2.2 Handles
	2.3 Object Types
	2.4 The NULL_OB Handle
	2.5 Daylight Version Handling

	3. Basics: Polymorphic Functions
	3.1 Polymorphism
	3.2 Generic Functions
	3.3 Semi-Generic Functions

	4. Error handling
	4.1 Introduction
	4.2 General approach
	4.3 Function types
	4.3.1 Functions which create objects
	4.3.2 Functions which get the properties of objects
	4.3.3 Functions which modify the properties of objects
	4.3.4. Exceptions

	4.4 Function return types
	4.4.1 Functions which return dt_Boolean
	4.4.2 Functions which return dt_Integer
	4.4.3 Functions which return dt_Real
	4.4.4 Functions which return dt_String
	4.4.5 Functions which return dt_Handle

	4.5 Error message facilities

	5. Basics: String and Number Objects
	5.1 String Objects
	5.2 Integer and Real Number Objects
	5.3 Binary-Data Functions

	6. Basics: Streams and Sequences
	6.1 Properties
	6.1.1 Stream Properties
	6.1.2Sequence Properties
	6.1.3 Example

	6.2 Functions on Streams and Sequences
	6.3 Functions on Sequences Only

	7. SMILES Toolkit: Molecules
	7.1 Creating Molecules
	7.2 Constituents of a Molecule
	7.3 Modifying Molecules
	7.3.1 Derived Properties
	7.3.2 The Modify-on and Modify-off States
	7.3.3 Functions Applicable Only During Modify-On
	7.3.4 Functions Applicable Only During Modify-Off
	7.3.5 Functions Applicable At All Times

	7.4 Structural-Modification Functions
	7.5 Properties of Atoms
	7.6 Properties of Bonds
	7.7 Properties of Cycles
	7.8 Generating SMILES
	7.9 Aromaticity
	7.10 Symmetry
	7.11 Chirality

	8. SMILES Toolkits: Substructures and Paths
	8.1 Introduction
	8.2 Functions on Substructures and Paths

	9. SMARTS Toolkit: Structural Searching
	9.1 Introduction
	9.2 Optimizing SMARTS
	9.3 Allocating Patterns and Pathsets
	9.4 Vector Bindings and Vbind Functions
	9.4.1 Pattern Bindings
	9.4.2 Pathset Bindings
	9.4.3 Functions

	9.5 Pattern Matching

	10. Fingerprint Toolkit
	10.1 Introduction
	10.2 Fingerprint Functions
	10.2.1 Global Settings
	10.2.2 Creating Fingerprints
	10.2.3 Properties
	10.2.4 Fingerprint Bit Operations
	10.2.5 Comparisons

	11. Depict Toolkit
	11.1 Introduction
	11.2 Depictions
	11.3 Conformations
	11.4 Modifying Depictions and Conformations
	11.5 The Drawing Library

	12. Reaction Toolkit
	12.1 Introduction:
	12.2 Polymorphism and the Reaction Toolkit:
	12.3 Processing reactions:
	12.4 Reaction Molecules:
	12.5 Atom Maps:
	12.6 Hydrogens in Reactions:
	12.7 Reaction Queries:
	12.8 Reactions and other objects:
	12.8.1 Paths and Substructs:
	12.8.2 Pathsets:
	12.8.3 Depictions:
	12.8.4 Conformations:
	12.8.5 Fingerprints:

	12.9 Transforms

	13. Program Object Toolkit
	13.1 Introduction
	13.2 Using Program Objects
	13.2.1 Welcome and Farewell Messages
	13.2.2 Other Special Messages
	13.2.3 Program Object Toolkit Functions

	13.3 PIPETALK Protocol
	13.3.1 Definitions
	13.3.2 Receiving Messages
	13.3.3 Sending Messages
	13.3.4 Initial Response to Execution
	13.3.5 Program Operation
	13.3.6 Response to Special Messages
	13.3.7 Program Termination
	13.3.8 Naming Convention

	14. THOR and Merline Toolkit: Servers
	14.1 Introduction: THOR and Merlin Objects
	14.2 Connecting to a Server
	14.3 Security
	14.3.1 Restricted user DX_INFO_USER
	14.3.2 Adding and Changing Users and Passwords

	15. THOR and Merlin Toolkits: Databases
	15.1 Introduction
	15.2 Search Path
	15.3 Creating and Configuring Databases
	15.3.1 Database Creation
	15.3.2 Database Configuration
	15.3.3 Database Crunching

	15.4 Opening and Closing Databases
	15.5 Memory Usage: Cache and Hold
	15.5.1 Merlin HOLD
	15.5.2 THOR Caching

	15.6 Database Security
	15.7 Record Locking

	16. THOR and MERLIN Toolkits: Datatypes
	16.1 Datatype and Fieldtype Objects
	16.2 Getting Datatype and Fieldtype Objects

	17. THOR Toolkit: THOR Datatrees
	17.1 THOR Streams
	17.2 Datatree Objects
	17.2.1 Creating Datatree Objects
	17.2.2 Destroying Datatrees and Datatree Objects
	17.2.3 The Datatree Memory
	17.2.4 Writing TDTs to a Database
	17.2.5 Timestamps
	17.2.6 Merging Datatrees
	17.2.7 Cross-Referencing
	17.2.8 Functions on TDT Objects

	17.3 Dataitem and Datafield Objects
	17.3.1 Functions on Dataitems and Datafields

	18. Merlin Toolkit
	18.1 Introduction
	18.2 Tasks -- "Time Slicing"
	18.3 Querying for Capabilities
	18.4 Column Objects
	18.4.1 Column "Functions"
	18.4.2 Creating Columns
	18.4.3 Information about Columns
	18.4.4 Polymorphic Functions on Columns

	18.5 Hitlist Objects
	18.5.1 Creating Hitlists
	18.5.2 Retrieving Data: Cells

	18.6 Sorting
	18.7 Searching
	18.7.1 Actions
	18.7.2 Parametric Searches
	18.7.3 Structural Searches
	18.7.4 Program-Object searches The Merlin server's searching capabilities can be extended via the use of user-written program objects.

	18.8 Other Hitlist Operations
	18.9 Saving and Restoring Hitlists

	19. Widgets
	19.1 Introduction
	19.2 Widget Functional Interface
	19.3 Widget Callback Functions
	19.4 Options
	19.5 The Widgets
	19.5.1 3D or "Trackball" Widget
	19.5.2 Depict Widget
	19.5.3 Edgar Widget
	19.5.4 File Widget
	19.5.5 Font Utility
	19.5.6 GRINS Widget
	19.5.7 Help Widget
	19.5.8 Message Widget
	19.5.9 Status Widget
	19.5.10 TDT Widget

	19.6 Widget Programmer's Reference

	20. HTTP Toolkit
	20.1 The Application Programmer Interface
	20.1.1 Create a Service (dt_alloc_http_server)
	20.1.2. Receive a Request (dt_http_get)
	20.1.3 Send a Response (dt_http_put)

	20.2 The Structure of Programs
	20.2.1 Build a CGI
	20.2.2. Build a Server
	20.2.3. Build a Dual-Purpose Server & CGI

	20.3 The Essential Properties
	20.3.1 Get a Request
	20.3.2 Set a Response
	20.3.3 Processing the GET Method: Hello World!

	20.4. The Entire Set of Properties
	20.4.1. Read-Only Properties of a CGI/Server
	20.4.2 Read-Write Properties of a CGI/Server
	20.4.3 Read-Only Properties of a Request
	20.4.4 Read-Write Properties of a Response

	20.5 Working With the Toolkit
	20.5.1 Processing the POST Method
	20.5.1.1 URL-Encoding (application/x-www-form-urlencoded)
	20.5.1.2 Multipart Data (multipart/form-data)

	20.5.2. Authenticating Access
	20.5.3 Serving Files from Disk
	20.5.4. Scripting with Java
	20.5.5 Formatting With Automatic HTML
	20.5.6 Adding Color to GIF Images
	20.5.7 Avoiding Run-Time Problems With Compiler Definitions
	20.5.8 Technical Specifications, Methods, Headers, and Status Codes

	21. Reentrant Toolkit Interface
	21.1 Introduction
	21.2 Data Issues
	21.3 Per-Thread Object Model
	21.4 Global Object Model
	21.5 Object Granularity
	21.6 Thread Safety versus Reentrancy
	21.7 Limitations

